Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm
- URL: http://arxiv.org/abs/2108.13367v1
- Date: Mon, 30 Aug 2021 16:42:27 GMT
- Title: Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm
- Authors: S.M Mehedi Zaman, Wasay Mahmood Qureshi, Md. Mohsin Sarker Raihan,
Ocean Monjur and Abdullah Bin Shams
- Abstract summary: Heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide.
Data mining is the process of converting massive volumes of raw data created by the healthcare institutions into meaningful information.
Our study shows that only certain attributes collected from the patients are imperative to successfully predict the surviving possibility post heart failure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular disease, especially heart failure is one of the major health
hazard issues of our time and is a leading cause of death worldwide.
Advancement in data mining techniques using machine learning (ML) models is
paving promising prediction approaches. Data mining is the process of
converting massive volumes of raw data created by the healthcare institutions
into meaningful information that can aid in making predictions and crucial
decisions. Collecting various follow-up data from patients who have had heart
failures, analyzing those data, and utilizing several ML models to predict the
survival possibility of cardiovascular patients is the key aim of this study.
Due to the imbalance of the classes in the dataset, Synthetic Minority
Oversampling Technique (SMOTE) has been implemented. Two unsupervised models
(K-Means and Fuzzy C-Means clustering) and three supervised classifiers (Random
Forest, XGBoost and Decision Tree) have been used in our study. After thorough
investigation, our results demonstrate a superior performance of the supervised
ML algorithms over unsupervised models. Moreover, we designed and propose a
supervised stacked ensemble learning model that can achieve an accuracy,
precision, recall and F1 score of 99.98%. Our study shows that only certain
attributes collected from the patients are imperative to successfully predict
the surviving possibility post heart failure, using supervised ML algorithms.
Related papers
- Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
Heart disease is a serious global health issue that claims millions of lives every year.
We employed five machine learning methods in this paper: Decision Tree (DT), Random Forest (RF), Linear Discriminant Analysis, Extra TreeBoost, and AdaBoost.
The accuracy of the Random Forest and Decision Tree model was 99.83%.
arXiv Detail & Related papers (2024-07-26T08:56:13Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
We evaluate and compare the classification accuracy, precision, recall, and F-1 scores of five different machine learning methods.
XGBoost achieved the best model accuracy, which is 97%.
arXiv Detail & Related papers (2024-04-06T17:23:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases [0.0]
The study created and tested several machine-learning-based classification models.
The results show that logistic regression produced the highest performance score on the original dataset.
In conclusion, this study suggests that LR on a well-processed and standardized dataset can predict coronary heart disease with greater accuracy than the other algorithms.
arXiv Detail & Related papers (2021-12-02T18:52:56Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.