MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing
- URL: http://arxiv.org/abs/2004.01267v2
- Date: Mon, 2 Nov 2020 19:11:29 GMT
- Title: MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing
- Authors: Tao Zhang, Congying Xia, Chun-Ta Lu, Philip Yu
- Abstract summary: Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types.
We propose MZET, a novel memory augmented FNET model, to tackle the unseen types in a zero-shot manner.
MZET incorporates character-level, word-level, and contextural-level information to learn the entity mention representation.
- Score: 11.88688584631821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity typing (NET) is a classification task of assigning an entity
mention in the context with given semantic types. However, with the growing
size and granularity of the entity types, rare researches in previous concern
with newly emerged entity types. In this paper, we propose MZET, a novel memory
augmented FNET (Fine-grained NET) model, to tackle the unseen types in a
zero-shot manner. MZET incorporates character-level, word-level, and
contextural-level information to learn the entity mention representation.
Besides, MZET considers the semantic meaning and the hierarchical structure
into the entity type representation. Finally, through the memory component
which models the relationship between the entity mention and the entity type,
MZET transfer the knowledge from seen entity types to the zero-shot ones.
Extensive experiments on three public datasets show prominent performance
obtained by MZET, which surpasses the state-of-the-art FNET neural network
models with up to 7% gain in Micro-F1 and Macro-F1 score.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNet is an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning.
OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.
arXiv Detail & Related papers (2024-10-10T02:45:23Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Seed-Guided Fine-Grained Entity Typing in Science and Engineering
Domains [51.02035914828596]
We study the task of seed-guided fine-grained entity typing in science and engineering domains.
We propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus.
It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types.
arXiv Detail & Related papers (2024-01-23T22:36:03Z) - Multi-view Contrastive Learning for Entity Typing over Knowledge Graphs [25.399684403558553]
We propose a novel method called Multi-view Contrastive Learning for knowledge graph Entity Typing (MCLET)
MCLET effectively encodes the coarse-grained knowledge provided by clusters into entity and type embeddings.
arXiv Detail & Related papers (2023-10-18T14:41:09Z) - Entity Type Prediction Leveraging Graph Walks and Entity Descriptions [4.147346416230273]
textitGRAND is a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions.
The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes.
arXiv Detail & Related papers (2022-07-28T13:56:55Z) - Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation
and Instance Generation [36.541309948222306]
We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type.
We propose a novel framework for few-shot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization.
arXiv Detail & Related papers (2022-06-28T04:05:40Z) - LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention [37.111204321059084]
We propose new pretrained contextualized representations of words and entities based on the bidirectional transformer.
Our model is trained using a new pretraining task based on the masked language model of BERT.
We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer.
arXiv Detail & Related papers (2020-10-02T15:38:03Z) - Autoregressive Entity Retrieval [55.38027440347138]
Entities are at the center of how we represent and aggregate knowledge.
The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering.
We propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion.
arXiv Detail & Related papers (2020-10-02T10:13:31Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
We present an approach to creating entity representations that are human readable and achieve high performance out of the box.
Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types.
We show that it is possible to reduce the size of our type set in a learning-based way for particular domains.
arXiv Detail & Related papers (2020-04-30T23:58:03Z) - Fine-Grained Named Entity Typing over Distantly Supervised Data Based on
Refined Representations [16.30478830298353]
Fine-Grained Named Entity Typing (FG-NET) is a key component in Natural Language Processing (NLP)
We propose an edge-weighted attentive graph convolution network that refines the noisy mention representations by attending over corpus-level contextual clues prior to the end classification.
Experimental evaluation shows that the proposed model outperforms the existing research by a relative score of upto 10.2% and 8.3% for macro f1 and micro f1 respectively.
arXiv Detail & Related papers (2020-04-07T17:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.