Entity Type Prediction Leveraging Graph Walks and Entity Descriptions
- URL: http://arxiv.org/abs/2207.14094v2
- Date: Fri, 29 Jul 2022 08:51:13 GMT
- Title: Entity Type Prediction Leveraging Graph Walks and Entity Descriptions
- Authors: Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, Mehwish Alam
- Abstract summary: textitGRAND is a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions.
The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes.
- Score: 4.147346416230273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The entity type information in Knowledge Graphs (KGs) such as DBpedia,
Freebase, etc. is often incomplete due to automated generation or human
curation. Entity typing is the task of assigning or inferring the semantic type
of an entity in a KG. This paper presents \textit{GRAND}, a novel approach for
entity typing leveraging different graph walk strategies in RDF2vec together
with textual entity descriptions. RDF2vec first generates graph walks and then
uses a language model to obtain embeddings for each node in the graph. This
study shows that the walk generation strategy and the embedding model have a
significant effect on the performance of the entity typing task. The proposed
approach outperforms the baseline approaches on the benchmark datasets DBpedia
and FIGER for entity typing in KGs for both fine-grained and coarse-grained
classes. The results show that the combination of order-aware RDF2vec variants
together with the contextual embeddings of the textual entity descriptions
achieve the best results.
Related papers
- Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
We propose an encoder-decoder model to disambiguate entities with more detailed entity descriptions.
We observe +1.5% improvements in end-to-end entity linking in the GERBIL benchmark compared with EntQA.
arXiv Detail & Related papers (2024-04-02T04:27:54Z) - Seed-Guided Fine-Grained Entity Typing in Science and Engineering
Domains [51.02035914828596]
We study the task of seed-guided fine-grained entity typing in science and engineering domains.
We propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus.
It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types.
arXiv Detail & Related papers (2024-01-23T22:36:03Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph
for Zero-shot Entity Retrieval [11.533614615010643]
We propose GER to capture more fine-grained information as complementary to sentence embeddings.
We learn the fine-grained information about mention/entity by aggregating information from these knowledge units.
Experimental results on popular benchmarks demonstrate that our proposed GER framework performs better than previous state-of-the-art models.
arXiv Detail & Related papers (2022-11-20T14:37:53Z) - Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation
and Instance Generation [36.541309948222306]
We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type.
We propose a novel framework for few-shot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization.
arXiv Detail & Related papers (2022-06-28T04:05:40Z) - Context-aware Entity Typing in Knowledge Graphs [12.181416235996302]
Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs.
This paper proposes a novel method for this task by utilizing entities' contextual information.
Experiments on two real-world KGs demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-09-16T13:59:27Z) - Coarse-to-Fine Entity Representations for Document-level Relation
Extraction [28.39444850200523]
Document-level Relation Extraction (RE) requires extracting relations expressed within and across sentences.
Recent works show that graph-based methods, usually constructing a document-level graph that captures document-aware interactions, can obtain useful entity representations.
We propose the textbfCoarse-to-textbfFine textbfEntity textbfRepresentation model (textbfCFER) that adopts a coarse-to-fine strategy.
arXiv Detail & Related papers (2020-12-04T10:18:59Z) - Connecting Embeddings for Knowledge Graph Entity Typing [22.617375045752084]
Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG.
We propose a novel approach for KG entity typing which is trained by jointly utilizing local typing knowledge from existing entity type assertions and global triple knowledge from KGs.
arXiv Detail & Related papers (2020-07-21T15:00:01Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
We present an approach to creating entity representations that are human readable and achieve high performance out of the box.
Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types.
We show that it is possible to reduce the size of our type set in a learning-based way for particular domains.
arXiv Detail & Related papers (2020-04-30T23:58:03Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.