Learning a Geometric Representation for Data-Efficient Depth Estimation
via Gradient Field and Contrastive Loss
- URL: http://arxiv.org/abs/2011.03207v2
- Date: Wed, 17 Mar 2021 05:59:46 GMT
- Title: Learning a Geometric Representation for Data-Efficient Depth Estimation
via Gradient Field and Contrastive Loss
- Authors: Dongseok Shim and H. Jin Kim
- Abstract summary: We propose a gradient-based self-supervised learning algorithm with momentum contrastive loss to help ConvNets extract the geometric information with unlabeled images.
Our method outperforms the previous state-of-the-art self-supervised learning algorithms and shows the efficiency of labeled data in triple.
- Score: 29.798579906253696
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating a depth map from a single RGB image has been investigated widely
for localization, mapping, and 3-dimensional object detection. Recent studies
on a single-view depth estimation are mostly based on deep Convolutional neural
Networks (ConvNets) which require a large amount of training data paired with
densely annotated labels. Depth annotation tasks are both expensive and
inefficient, so it is inevitable to leverage RGB images which can be collected
very easily to boost the performance of ConvNets without depth labels. However,
most self-supervised learning algorithms are focused on capturing the semantic
information of images to improve the performance in classification or object
detection, not in depth estimation. In this paper, we show that existing
self-supervised methods do not perform well on depth estimation and propose a
gradient-based self-supervised learning algorithm with momentum contrastive
loss to help ConvNets extract the geometric information with unlabeled images.
As a result, the network can estimate the depth map accurately with a
relatively small amount of annotated data. To show that our method is
independent of the model structure, we evaluate our method with two different
monocular depth estimation algorithms. Our method outperforms the previous
state-of-the-art self-supervised learning algorithms and shows the efficiency
of labeled data in triple compared to random initialization on the NYU Depth v2
dataset.
Related papers
- SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - 360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse
Network [35.03201732370496]
Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction.
In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem.
We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset.
arXiv Detail & Related papers (2022-02-16T11:56:31Z) - Depth Refinement for Improved Stereo Reconstruction [13.941756438712382]
Current techniques for depth estimation from stereoscopic images still suffer from a built-in drawback.
A simple analysis reveals that the depth error is quadratically proportional to the object's distance.
We propose a simple but effective method that uses a refinement network for depth estimation.
arXiv Detail & Related papers (2021-12-15T12:21:08Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [36.414471128890284]
We tackle the essential problem of scale inconsistency for self-supervised joint depth-pose learning.
Most existing methods assume that a consistent scale of depth and pose can be learned across all input samples.
We propose a novel system that explicitly disentangles scale from the network estimation.
arXiv Detail & Related papers (2020-04-03T00:28:09Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - DELTAS: Depth Estimation by Learning Triangulation And densification of
Sparse points [14.254472131009653]
Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation.
Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems.
We propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs.
arXiv Detail & Related papers (2020-03-19T17:56:41Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.