論文の概要: Hawkes Process Multi-armed Bandits for Disaster Search and Rescue
- arxiv url: http://arxiv.org/abs/2004.01580v1
- Date: Fri, 3 Apr 2020 14:05:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 04:02:17.744796
- Title: Hawkes Process Multi-armed Bandits for Disaster Search and Rescue
- Title(参考訳): 災害救助のための複数武装バンドのホークスプロセス
- Authors: Wen-Hao Chiang and George Mohler
- Abstract要約: ベイズ空間ホークス過程推定を用いた高信頼結合アルゴリズムを提案する。
まず、シミュレーションデータを用いてモデルを検証し、2017年にハリケーン・ハーヴェイのサービスデータを呼び出して災害救助問題に適用する。
我々のモデルは,累積報酬および他のランキング評価指標の観点から,アートベースライン空間MABアルゴリズムの状況より優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework for integrating Hawkes processes with
multi-armed bandit algorithms to solve spatio-temporal event forecasting and
detection problems when data may be undersampled or spatially biased. In
particular, we introduce an upper confidence bound algorithm using Bayesian
spatial Hawkes process estimation for balancing the tradeoff between exploiting
geographic regions where data has been collected and exploring geographic
regions where data is unobserved. We first validate our model using simulated
data and then apply it to the problem of disaster search and rescue using calls
for service data from hurricane Harvey in 2017. Our model outperforms the state
of the art baseline spatial MAB algorithms in terms of cumulative reward and
several other ranking evaluation metrics.
- Abstract(参考訳): 本稿では,ホークスプロセスと多腕バンディットアルゴリズムを統合する新しい枠組みを提案し,データのサンプル不足や空間偏りがある場合の時空間的事象予測と検出問題を解決する。
特に,ベイズ空間ホークス過程推定を用いた高信頼バウンドアルゴリズムを導入して,収集された地理的領域の活用と,観測されていない地理的領域の探索とのトレードオフのバランスをとる。
最初にシミュレーションデータを用いてモデルを検証するとともに,2017年のハリケーン・ハーベイからのサービスデータ要求を用いて,防災・救助問題に適用した。
我々のモデルは,累積報酬および他のランキング評価指標の観点から,アートベースライン空間MABアルゴリズムの状況より優れている。
関連論文リスト
- Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
本研究ではSpatialRankという新しい空間イベントランキング手法を提案する。
本研究では,SpatialRankが犯罪や交通事故の最も危険性の高い場所を効果的に特定できることを示す。
論文 参考訳(メタデータ) (2023-09-30T06:20:21Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Implicit neural representation for change detection [15.741202788959075]
点雲の変化を検出する最も一般的なアプローチは、教師付き手法に基づいている。
Inlicit Neural Representation (INR) for continuous shape reconstruction と Gaussian Mixture Model for categorising change の2つのコンポーネントからなる教師なしアプローチを提案する。
本手法を都市スプロールのためのシミュレーションLiDAR点雲からなるベンチマークデータセットに適用する。
論文 参考訳(メタデータ) (2023-07-28T09:26:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Learning Incident Prediction Models Over Large Geographical Areas for
Emergency Response Systems [0.7340017786387767]
本稿では,道路の地形,気象,歴史的事故,リアルタイム交通渋滞に関するデータを用いて,事故予測を支援するパイプラインについて述べる。
実験結果から,本手法は現状の手法と比較して,現場での応答時間を著しく短縮できることがわかった。
論文 参考訳(メタデータ) (2021-06-15T17:33:36Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Spatio-temporal Sequence Prediction with Point Processes and
Self-organizing Decision Trees [0.0]
分割時間予測問題に対して,ポイントプロセスに基づく予測アルゴリズムを導入する。
本アルゴリズムは,勾配に基づく最適化手法により,これらの領域間の空間事象と相互作用を共同で学習することができる。
当社のアプローチと最先端のディープラーニングベースのアプローチを比較して,大幅なパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2020-06-25T14:04:55Z) - Prediction with Spatio-temporal Point Processes with Self Organizing
Decision Trees [0.0]
私たちはこの問題に新しいアプローチを導入します。
我々のアプローチは、非定常かつ自己興奮的なプロセスであるホークスプロセスに基づいている。
実生活データに関する実験結果を提供する。
論文 参考訳(メタデータ) (2020-03-07T20:39:31Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。