論文の概要: A Multi-Channel Neural Graphical Event Model with Negative Evidence
- arxiv url: http://arxiv.org/abs/2002.09575v1
- Date: Fri, 21 Feb 2020 23:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 00:52:11.268655
- Title: A Multi-Channel Neural Graphical Event Model with Negative Evidence
- Title(参考訳): 負の証拠を持つマルチチャネルニューラルグラフイベントモデル
- Authors: Tian Gao, Dharmashankar Subramanian, Karthikeyan Shanmugam, Debarun
Bhattacharjya, Nicholas Mattei
- Abstract要約: イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
- 参考スコア(独自算出の注目度): 76.51278722190607
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event datasets are sequences of events of various types occurring irregularly
over the time-line, and they are increasingly prevalent in numerous domains.
Existing work for modeling events using conditional intensities rely on either
using some underlying parametric form to capture historical dependencies, or on
non-parametric models that focus primarily on tasks such as prediction. We
propose a non-parametric deep neural network approach in order to estimate the
underlying intensity functions. We use a novel multi-channel RNN that optimally
reinforces the negative evidence of no observable events with the introduction
of fake event epochs within each consecutive inter-event interval. We evaluate
our method against state-of-the-art baselines on model fitting tasks as gauged
by log-likelihood. Through experiments on both synthetic and real-world
datasets, we find that our proposed approach outperforms existing baselines on
most of the datasets studied.
- Abstract(参考訳): イベントデータセットは、時間線上で不規則に発生するさまざまなタイプのイベントのシーケンスであり、多くのドメインでますます普及している。
条件付き強度を使用してイベントをモデル化するための既存の作業は、過去の依存関係をキャプチャするためにいくつかのパラメトリック形式を使用するか、または予測のようなタスクに主にフォーカスする非パラメトリックモデルに依存する。
基礎となる強度関数を推定するために,非パラメトリック深層ニューラルネットワーク手法を提案する。
本研究では,観測不能事象の否定的証拠を,連続するイベント間隔内にフェイクイベントエポックを導入することにより最適に補強する,新しいマルチチャネルRNNを用いる。
本手法は,log-likelihoodで測定したモデルフィッティングタスクにおける最先端ベースラインに対する評価を行う。
合成データセットと実世界のデータセットの両方の実験により、提案手法は、研究されたデータセットのほとんどで既存のベースラインよりも優れていることがわかった。
関連論文リスト
- Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
本稿では,イベントアソシエーションと融合問題に明示的に対処する新しいイベントデータアソシエーション(EDA)手法を提案する。
提案するEDAは、統合データアソシエーションと情報融合を行うために、イベントデータに最も適したイベントトラジェクトリを求める。
実験結果から,高速,運動のぼやけ,高ダイナミックレンジ条件といった難易度シナリオ下でのEDAの有効性が示された。
論文 参考訳(メタデータ) (2021-10-25T13:56:00Z) - User-Dependent Neural Sequence Models for Continuous-Time Event Data [27.45413274751265]
継続的イベントデータは、個々の行動データ、金融取引、医療健康記録などのアプリケーションで一般的である。
時間変化強度関数をパラメータ化するリカレントニューラルネットワークは、そのようなデータを用いた予測モデリングの最先端技術である。
本稿では,ニューラルマーク点過程モデルの幅広いクラスを,潜伏埋め込みの混合に拡張する。
論文 参考訳(メタデータ) (2020-11-06T08:32:57Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Context-dependent self-exciting point processes: models, methods, and
risk bounds in high dimensions [21.760636228118607]
高次元自己回帰ポイントプロセスは、現在のイベントが、ソーシャルネットワークの1人のメンバーによる活動のような将来の出来事を誘発または抑制する方法をモデル化する。
我々は、機械学習における合成時系列と正規化手法のアイデアを活用し、高次元マークポイントプロセスのネットワーク推定を行う。
論文 参考訳(メタデータ) (2020-03-16T20:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。