Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation
- URL: http://arxiv.org/abs/2004.01661v1
- Date: Fri, 3 Apr 2020 16:28:55 GMT
- Title: Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation
- Authors: Marie-Julie Rakotosaona, Maks Ovsjanikov
- Abstract summary: We present a learning-based method for interpolating and manipulating 3D shapes represented as point clouds.
Our approach is based on constructing a dual encoding space that enables synthesis shape and, at the same time, provides links to the intrinsic shape information.
- Score: 38.61801196027949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a learning-based method for interpolating and manipulating 3D
shapes represented as point clouds, that is explicitly designed to preserve
intrinsic shape properties. Our approach is based on constructing a dual
encoding space that enables shape synthesis and, at the same time, provides
links to the intrinsic shape information, which is typically not available on
point cloud data. Our method works in a single pass and avoids expensive
optimization, employed by existing techniques. Furthermore, the strong
regularization provided by our dual latent space approach also helps to improve
shape recovery in challenging settings from noisy point clouds across different
datasets. Extensive experiments show that our method results in more realistic
and smoother interpolations compared to baselines.
Related papers
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Robustifying Generalizable Implicit Shape Networks with a Tunable
Non-Parametric Model [10.316008740970037]
Generalizable models for implicit shape reconstruction from unoriented point cloud suffer from generalization issues.
We propose here an efficient mechanism to remedy some of these limitations at test time.
We demonstrate the improvement obtained through our method with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2023-11-21T20:12:29Z) - Unsupervised Representation Learning for Diverse Deformable Shape
Collections [30.271818994854353]
We introduce a novel learning-based method for encoding and manipulating 3D surface meshes.
Our method is specifically designed to create an interpretable embedding space for deformable shape collections.
arXiv Detail & Related papers (2023-10-27T13:45:30Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
We introduce a self-supervised multimodal learning strategy that combines mesh-based functional map regularisation with a contrastive loss that couples mesh and point cloud data.
Our shape matching approach allows to obtain intramodal correspondences for triangle meshes, complete point clouds, and partially observed point clouds.
We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets.
arXiv Detail & Related papers (2023-03-20T09:47:02Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - Concentric Spherical GNN for 3D Representation Learning [53.45704095146161]
We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps.
Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information.
We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.
arXiv Detail & Related papers (2021-03-18T19:05:04Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.