Identifying Radiological Findings Related to COVID-19 from Medical
Literature
- URL: http://arxiv.org/abs/2004.01862v1
- Date: Sat, 4 Apr 2020 05:33:21 GMT
- Title: Identifying Radiological Findings Related to COVID-19 from Medical
Literature
- Authors: Yuxiao Liang, Pengtao Xie
- Abstract summary: Radiological findings are important sources of information in guiding the diagnosis and treatment of COVID-19.
Existing studies on how radiological findings are correlated with COVID-19 are conducted separately by different hospitals.
We apply our method to the CORD-19 dataset and successfully extract a set of radiological findings that are closely tied to COVID-19.
- Score: 16.310353152265158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus disease 2019 (COVID-19) has infected more than one million
individuals all over the world and caused more than 55,000 deaths, as of April
3 in 2020. Radiological findings are important sources of information in
guiding the diagnosis and treatment of COVID-19. However, the existing studies
on how radiological findings are correlated with COVID-19 are conducted
separately by different hospitals, which may be inconsistent or even
conflicting due to population bias. To address this problem, we develop natural
language processing methods to analyze a large collection of COVID-19
literature containing study reports from hospitals all over the world,
reconcile these results, and draw unbiased and universally-sensible conclusions
about the correlation between radiological findings and COVID-19. We apply our
method to the CORD-19 dataset and successfully extract a set of radiological
findings that are closely tied to COVID-19.
Related papers
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
We introduce COVIDx CXR-4, an expanded multi-institutional open-source benchmark dataset for chest X-ray image-based computer-aided COVID-19 diagnostics.
COVIDx CXR-4 expands significantly on the previous COVIDx CXR-3 dataset by increasing the total patient cohort size by greater than 2.66 times.
We provide extensive analysis on the diversity of the patient demographic, imaging metadata, and disease distributions to highlight potential dataset biases.
arXiv Detail & Related papers (2023-11-29T14:40:31Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-US is an open-access benchmark dataset of COVID-19 related ultrasound imaging data.
It consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases.
arXiv Detail & Related papers (2021-03-18T03:31:33Z) - Studying the Similarity of COVID-19 Sounds based on Correlation Analysis
of MFCC [1.9659095632676098]
We illustrate the importance of speech signal processing in the extraction of the Mel-Frequency Cepstral Coefficients (MFCCs) of the COVID-19 and non-COVID-19 samples.
Our results show high similarity in MFCCs between different COVID-19 cough and breathing sounds, while MFCC of voice is more robust between COVID-19 and non-COVID-19 samples.
arXiv Detail & Related papers (2020-10-17T11:38:05Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - UMLS-ChestNet: A deep convolutional neural network for radiological
findings, differential diagnoses and localizations of COVID-19 in chest
x-rays [3.718680266467099]
We present a method for the detection of radiological findings, their location and differential diagnoses from chest x-rays.
We use a hierarchical taxonomy mapped to the Unified Medical Language System (UMLS) terminology to identify 189 radiological findings, 22 differential diagnosis and 122 anatomic locations.
We train the system on one large database of 92,594 frontal chest x-rays (AP or PA, standing, supine or decubitus) and a second database of 2,065 frontal images of COVID-19 patients identified by at least one positive Polymerase Chain Reaction (PCR) test.
arXiv Detail & Related papers (2020-06-06T19:24:35Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - COVID-CT-Dataset: A CT Scan Dataset about COVID-19 [33.60943657492132]
During the outbreak time of COVID-19, computed tomography (CT) is a useful manner for diagnosing COVID-19 patients.
Due to privacy issues, publicly available COVID-19 CT datasets are highly difficult to obtain.
We build an open-sourced dataset -- COVID-CT, which contains 349 COVID-19 CT images from 216 patients and 463 non-COVID-19 CTs.
arXiv Detail & Related papers (2020-03-30T23:27:24Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.