COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans
- URL: http://arxiv.org/abs/2107.01527v1
- Date: Sun, 4 Jul 2021 03:19:43 GMT
- Title: COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans
- Authors: Nastaran Enshaei, Anastasia Oikonomou, Moezedin Javad Rafiee, Parnian
Afshar, Shahin Heidarian, Arash Mohammadi, Konstantinos N. Plataniotis, and
Farnoosh Naderkhani
- Abstract summary: During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
- Score: 29.266579630983358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel Coronavirus disease (COVID-19) is a highly contagious respiratory
infection that has had devastating effects on the world. Recently, new COVID-19
variants are emerging making the situation more challenging and threatening.
Evaluation and quantification of COVID-19 lung abnormalities based on chest
Computed Tomography (CT) scans can help determining the disease stage,
efficiently allocating limited healthcare resources, and making informed
treatment decisions. During pandemic era, however, visual assessment and
quantification of COVID-19 lung lesions by expert radiologists become expensive
and prone to error, which raises an urgent quest to develop practical
autonomous solutions. In this context, first, the paper introduces an open
access COVID-19 CT segmentation dataset containing 433 CT images from 82
patients that have been annotated by an expert radiologist. Second, a Deep
Neural Network (DNN)-based framework is proposed, referred to as the
COVID-Rate, that autonomously segments lung abnormalities associated with
COVID-19 from chest CT scans. Performance of the proposed COVID-Rate framework
is evaluated through several experiments based on the introduced and external
datasets. The results show a dice score of 0:802 and specificity and
sensitivity of 0:997 and 0:832, respectively. Furthermore, the results indicate
that the COVID-Rate model can efficiently segment COVID-19 lesions in both 2D
CT images and whole lung volumes. Results on the external dataset illustrate
generalization capabilities of the COVID-Rate model to CT images obtained from
a different scanner.
Related papers
- A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Classification of COVID-19 Patients with their Severity Level from Chest
CT Scans using Transfer Learning [3.667495151642095]
The rapid increment in cases of COVID-19 has led to an increase in demand for hospital beds and other medical equipment.
Keeping this in mind, we share our research in detecting COVID-19 as well as assessing its severity using chest-CT scans and Deep Learning pre-trained models.
Our model can therefore help radiologists detect COVID-19 and the extent of its severity.
arXiv Detail & Related papers (2022-05-27T06:22:09Z) - COVID-Net CT-S: 3D Convolutional Neural Network Architectures for
COVID-19 Severity Assessment using Chest CT Images [85.00197722241262]
We introduce COVID-Net CT-S, a suite of deep convolutional neural networks for predicting lung disease severity due to COVID-19 infection.
A 3D residual architecture design is leveraged to learn volumetric visual indicators characterizing the degree of COVID-19 lung disease severity.
arXiv Detail & Related papers (2021-05-04T04:44:41Z) - COVID-19 Infection Localization and Severity Grading from Chest X-ray
Images [3.4546388019336143]
Coronavirus disease 2019 (COVID-19) has been the main agenda of the whole world, since it came into sight in December 2019.
We have constructed the largest benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples.
The proposed approach has achieved an outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%.
arXiv Detail & Related papers (2021-03-14T18:06:06Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
The aim of this study is to realize automatic severity assessment (non-severe or severe) of COVID-19 based on chest CT images.
A random forest (RF) model is trained to assess the severity (non-severe or severe) based on quantitative features.
Several quantitative features, which have the potential to reflect the severity of COVID-19, were revealed.
arXiv Detail & Related papers (2020-03-26T15:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.