An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment
Analysis
- URL: http://arxiv.org/abs/2004.01935v3
- Date: Thu, 2 Sep 2021 02:21:01 GMT
- Title: An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment
Analysis
- Authors: Yunlong Liang, Fandong Meng, Jinchao Zhang, Yufeng Chen, Jinan Xu and
Jie Zhou
- Abstract summary: We propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA.
Our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm.
Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
- Score: 73.7488524683061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect
term extraction, opinion term extraction, and aspect-level sentiment
classification, which are typically handled in a separate or joint manner.
However, previous approaches do not well exploit the interactive relations
among three subtasks and do not pertinently leverage the easily available
document-level labeled domain/sentiment knowledge, which restricts their
performances. To address these issues, we propose a novel Iterative
Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing,
through the interactive correlations between the ABSA subtasks, our IMKTN
transfers the task-specific knowledge from any two of the three subtasks to
another one at the token level by utilizing a well-designed routing algorithm,
that is, any two of the three subtasks will help the third one. For another,
our IMKTN pertinently transfers the document-level knowledge, i.e.,
domain-specific and sentiment-related knowledge, to the aspect-level subtasks
to further enhance the corresponding performance. Experimental results on three
benchmark datasets demonstrate the effectiveness and superiority of our
approach.
Related papers
- Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
We present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT) for simultaneous subject localization and emotion classification.
We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC.
arXiv Detail & Related papers (2024-04-26T07:30:32Z) - CONTRASTE: Supervised Contrastive Pre-training With Aspect-based Prompts
For Aspect Sentiment Triplet Extraction [13.077459544929598]
We present a novel pre-training strategy using CONTRastive learning to enhance the ASTE performance.
We also demonstrate the advantage of our proposed technique on other ABSA tasks such as ACOS, TASD, and AESC.
arXiv Detail & Related papers (2023-10-24T07:40:09Z) - A Hierarchical Interactive Network for Joint Span-based Aspect-Sentiment
Analysis [34.1489054082536]
We propose a hierarchical interactive network (HI-ASA) to model two-way interactions between two tasks appropriately.
We use cross-stitch mechanism to combine the different task-specific features selectively as the input to ensure proper two-way interactions.
Experiments on three real-world datasets demonstrate HI-ASA's superiority over baselines.
arXiv Detail & Related papers (2022-08-24T03:03:49Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
This work explores conversational task transfer by introducing FETA: a benchmark for few-sample task transfer in open-domain dialogue.
FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer.
We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs.
arXiv Detail & Related papers (2022-05-12T17:59:00Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
We propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information.
DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
arXiv Detail & Related papers (2021-06-07T17:16:15Z) - Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet
Extraction [8.208671244754317]
Aspect sentiment triplet extraction (ASTE) is an emerging task in fine-grained opinion mining.
We transform ASTE task into a multi-turn machine reading comprehension (MTMRC) task.
We propose a bidirectional MRC (BMRC) framework to address this challenge.
arXiv Detail & Related papers (2021-03-13T09:30:47Z) - A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis [9.587513675287829]
Aspect based sentiment analysis involves three fundamental subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification.
Previous approaches fail to solve all subtasks in a unified end-to-end framework.
We construct two machine reading comprehension problems and solve all subtasks by joint training two BERT-MRC models with parameters sharing.
arXiv Detail & Related papers (2021-01-04T07:47:53Z) - DCR-Net: A Deep Co-Interactive Relation Network for Joint Dialog Act
Recognition and Sentiment Classification [77.59549450705384]
In dialog system, dialog act recognition and sentiment classification are two correlative tasks.
Most of the existing systems either treat them as separate tasks or just jointly model the two tasks.
We propose a Deep Co-Interactive Relation Network (DCR-Net) to explicitly consider the cross-impact and model the interaction between the two tasks.
arXiv Detail & Related papers (2020-08-16T14:13:32Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.