CONTRASTE: Supervised Contrastive Pre-training With Aspect-based Prompts
For Aspect Sentiment Triplet Extraction
- URL: http://arxiv.org/abs/2310.15577v1
- Date: Tue, 24 Oct 2023 07:40:09 GMT
- Title: CONTRASTE: Supervised Contrastive Pre-training With Aspect-based Prompts
For Aspect Sentiment Triplet Extraction
- Authors: Rajdeep Mukherjee, Nithish Kannen, Saurabh Kumar Pandey, Pawan Goyal
- Abstract summary: We present a novel pre-training strategy using CONTRastive learning to enhance the ASTE performance.
We also demonstrate the advantage of our proposed technique on other ABSA tasks such as ACOS, TASD, and AESC.
- Score: 13.077459544929598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing works on Aspect Sentiment Triplet Extraction (ASTE) explicitly focus
on developing more efficient fine-tuning techniques for the task. Instead, our
motivation is to come up with a generic approach that can improve the
downstream performances of multiple ABSA tasks simultaneously. Towards this, we
present CONTRASTE, a novel pre-training strategy using CONTRastive learning to
enhance the ASTE performance. While we primarily focus on ASTE, we also
demonstrate the advantage of our proposed technique on other ABSA tasks such as
ACOS, TASD, and AESC. Given a sentence and its associated (aspect, opinion,
sentiment) triplets, first, we design aspect-based prompts with corresponding
sentiments masked. We then (pre)train an encoder-decoder model by applying
contrastive learning on the decoder-generated aspect-aware sentiment
representations of the masked terms. For fine-tuning the model weights thus
obtained, we then propose a novel multi-task approach where the base
encoder-decoder model is combined with two complementary modules, a
tagging-based Opinion Term Detector, and a regression-based Triplet Count
Estimator. Exhaustive experiments on four benchmark datasets and a detailed
ablation study establish the importance of each of our proposed components as
we achieve new state-of-the-art ASTE results.
Related papers
- Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet Extraction (EASTE) is a novel Aspect-Based Sentiment Analysis task.
Our research aims to achieve high performance on the EASTE task and investigates the impact of model size, type, and adaptation techniques on task performance.
Ultimately, we provide detailed insights and achieving state-of-the-art results in complex sentiment analysis.
arXiv Detail & Related papers (2024-07-04T16:48:14Z) - MiniConGTS: A Near Ultimate Minimalist Contrastive Grid Tagging Scheme for Aspect Sentiment Triplet Extraction [7.785948823258398]
We propose a method to improve and utilize pretrained representations by integrating a minimalist tagging scheme and a novel token-level contrastive learning strategy.
The proposed approach demonstrates comparable or superior performance compared to state-of-the-art techniques.
arXiv Detail & Related papers (2024-06-17T06:01:11Z) - Rethinking ASTE: A Minimalist Tagging Scheme Alongside Contrastive Learning [7.785948823258398]
Aspect Sentiment Triplet Extraction (ASTE) is a burgeoning subtask of fine-grained sentiment analysis.
Existing approaches to ASTE often complicate the task with additional structures or external data.
We propose a novel tagging scheme and employ a contrastive learning approach to mitigate these challenges.
arXiv Detail & Related papers (2024-03-12T06:01:04Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - A Weak Supervision Approach for Few-Shot Aspect Based Sentiment [39.33888584498155]
Weak supervision on abundant unlabeled data can be leveraged to improve few-shot performance in sentiment analysis tasks.
We propose a pipeline approach to construct a noisy ABSA dataset, and we use it to adapt a pre-trained sequence-to-sequence model to the ABSA tasks.
Our proposed method preserves the full fine-tuning performance while showing significant improvements (15.84% absolute F1) in the few-shot learning scenario.
arXiv Detail & Related papers (2023-05-19T19:53:54Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
We present a unified formulation and model for three motion and 3D perception tasks.
We formulate all three tasks as a unified dense correspondence matching problem.
Our model naturally enables cross-task transfer since the model architecture and parameters are shared across tasks.
arXiv Detail & Related papers (2022-11-10T18:59:54Z) - ContrastVAE: Contrastive Variational AutoEncoder for Sequential
Recommendation [58.02630582309427]
We propose to incorporate contrastive learning into the framework of Variational AutoEncoders.
We introduce ContrastELBO, a novel training objective that extends the conventional single-view ELBO to two-view case.
We also propose ContrastVAE, a two-branched VAE model with contrastive regularization as an embodiment of ContrastELBO for sequential recommendation.
arXiv Detail & Related papers (2022-08-27T03:35:00Z) - Seeking Common but Distinguishing Difference, A Joint Aspect-based
Sentiment Analysis Model [43.4726612032584]
We propose a joint ABSA model, which not only enjoys the benefits of encoder sharing but also focuses on the difference to improve the effectiveness of the model.
In detail, we introduce a dual-encoder design, in which a pair encoder especially focuses on candidate aspect-opinion pair classification, and the original encoder keeps attention on sequence labeling.
Empirical results show that our proposed model shows robustness and significantly outperforms the previous state-of-the-art on four benchmark datasets.
arXiv Detail & Related papers (2021-11-18T11:24:48Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment
Analysis [73.7488524683061]
We propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA.
Our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm.
Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
arXiv Detail & Related papers (2020-04-04T13:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.