Strong quantum correlations of light emitted by a single atom in free
space
- URL: http://arxiv.org/abs/2004.01993v1
- Date: Sat, 4 Apr 2020 18:43:43 GMT
- Title: Strong quantum correlations of light emitted by a single atom in free
space
- Authors: Daniel Goncalves, Morgan W. Mitchell and Darrick E. Chang
- Abstract summary: We present a novel approach to engineer the photon correlations emerging from the interference between an input field and the field scattered by a single atom in free space.
We show that one can tune the correlation function $g(2)(tau)$ from zero (perfect anti-bunching) to infinite (extreme bunching) by a proper choice of pump amplitude.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to engineer the photon correlations emerging from
the interference between an input field and the field scattered by a single
atom in free space. Nominally, the inefficient atom-light coupling causes the
quantum correlations to be dominated by the input field alone. To overcome this
issue, we propose the use of separate pump and probe beams, where the former
increases the atomic emission to be comparable to the probe. Examining the
second-order correlation function $g^{(2)}(\tau)$ of the total field in the
probe direction, we find that the addition of the pump formally plays the same
role as increasing the coupling efficiency. We show that one can tune the
correlation function $g^{(2)}(0)$ from zero (perfect anti-bunching) to infinite
(extreme bunching) by a proper choice of pump amplitude. We further elucidate
the origin of these correlations in terms of the transient atomic state
following the detection of a photon.
Related papers
- Quantum correlations of the photon fields in a waveguide quantum electrodynamics [0.0]
We calculate the first order and second order photon correlation functions for the scattering of a single-photon pulse on a two-level atom.
Within Markov approximation we find the analytic expression for the quantum operator of positive frequency electric field.
arXiv Detail & Related papers (2024-10-23T09:36:19Z) - Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - $n$-body anti-bunching in a degenerate Fermi gas of $^3$He* atoms [4.3075190561751]
We use the unique single-atom detection properties of $3$He* atoms to perform simultaneous measurements of the $n$-body quantum correlations.
Our results pave the way for using correlation functions to probe some of the rich physics associated with fermionic systems.
arXiv Detail & Related papers (2023-12-05T23:41:00Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Master equations and quantum trajectories for squeezed wave packets [0.0]
The interaction between matter and squeezed light has mostly been treated within the approximation that the field correlation time is small.
We develop a general purpose input-output theory for a particular form of narrowband squeezed light.
arXiv Detail & Related papers (2021-09-12T05:03:48Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.