論文の概要: Any-Shot Sequential Anomaly Detection in Surveillance Videos
- arxiv url: http://arxiv.org/abs/2004.02072v1
- Date: Sun, 5 Apr 2020 02:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 12:17:55.473196
- Title: Any-Shot Sequential Anomaly Detection in Surveillance Videos
- Title(参考訳): 監視ビデオにおける任意のショットシーケンス異常検出
- Authors: Keval Doshi, Yasin Yilmaz
- Abstract要約: 本稿では,トランスファーラーニングとノンショットラーニングを用いた監視ビデオのオンライン異常検出手法を提案する。
提案アルゴリズムは,トランスファー学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法のノンショット学習能力を利用する。
- 参考スコア(独自算出の注目度): 36.24563211765782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in surveillance videos has been recently gaining attention.
Even though the performance of state-of-the-art methods on publicly available
data sets has been competitive, they demand a massive amount of training data.
Also, they lack a concrete approach for continuously updating the trained model
once new data is available. Furthermore, online decision making is an important
but mostly neglected factor in this domain. Motivated by these research gaps,
we propose an online anomaly detection method for surveillance videos using
transfer learning and any-shot learning, which in turn significantly reduces
the training complexity and provides a mechanism that can detect anomalies
using only a few labeled nominal examples. Our proposed algorithm leverages the
feature extraction power of neural network-based models for transfer learning
and the any-shot learning capability of statistical detection methods.
- Abstract(参考訳): 近年,監視ビデオの異常検出が注目されている。
公開データセットでの最先端のメソッドのパフォーマンスは競争力があるものの、膨大なトレーニングデータを要求する。
また、新しいデータが利用可能になると、トレーニングされたモデルを継続的に更新するための具体的なアプローチがない。
さらに、オンライン意思決定はこのドメインにおいて重要ではあるが、ほとんど無視されている要素である。
これらの研究のギャップを生かして,トランスファーラーニングとノンショットラーニングを用いた監視ビデオのオンライン異常検出手法を提案し,これによりトレーニングの複雑さを著しく低減し,いくつかのラベル付き命名例を用いた異常検出機構を提供する。
提案アルゴリズムは,移動学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法のノンショット学習能力を利用する。
関連論文リスト
- Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
PIVOTは、画像領域から事前学習したモデルにおける広範な知識を活用する新しい手法である。
実験の結果,PIVOTは20タスクのアクティビティネット設定において,最先端の手法を27%向上することがわかった。
論文 参考訳(メタデータ) (2022-12-09T13:22:27Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
本稿では,この分野の研究者を新たな視点に紹介し,最近の深層学習に基づく半教師付きビデオ異常検出手法についてレビューする。
私たちのゴールは、より効果的なビデオ異常検出方法の開発を支援することです。
論文 参考訳(メタデータ) (2021-11-02T14:00:33Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Online Anomaly Detection in Surveillance Videos with Asymptotic Bounds
on False Alarm Rate [36.24563211765782]
本稿では,誤報率に制約のある監視ビデオにおけるオンライン異常検出手法を提案する。
提案アルゴリズムは,多目的ディープラーニングモジュールと統計的異常検出モジュールから構成される。
論文 参考訳(メタデータ) (2020-10-10T04:46:16Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
本稿では,事前学習した畳み込みニューラルネットモデルを用いて特徴抽出とコンテキストマイニングを行う方法について述べる。
我々は,高レベルの特徴から文脈特性を導出し,ビデオ異常検出法の性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-10-06T00:26:14Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
本稿では,移動学習と連続学習を用いた監視ビデオのオンライン異常検出手法を提案する。
提案アルゴリズムは,移動学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法の連続学習能力を利用する。
論文 参考訳(メタデータ) (2020-04-15T16:41:20Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。