論文の概要: Few-Cost Salient Object Detection with Adversarial-Paced Learning
- arxiv url: http://arxiv.org/abs/2104.01928v1
- Date: Mon, 5 Apr 2021 14:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 19:41:21.667295
- Title: Few-Cost Salient Object Detection with Adversarial-Paced Learning
- Title(参考訳): 逆処理学習による少数の有意物体検出
- Authors: Dingwen Zhang, Haibin Tian, and Jungong Han
- Abstract要約: 本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 95.0220555274653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and segmenting salient objects from given image scenes has received
great attention in recent years. A fundamental challenge in training the
existing deep saliency detection models is the requirement of large amounts of
annotated data. While gathering large quantities of training data becomes cheap
and easy, annotating the data is an expensive process in terms of time, labor
and human expertise. To address this problem, this paper proposes to learn the
effective salient object detection model based on the manual annotation on a
few training images only, thus dramatically alleviating human labor in training
models. To this end, we name this task as the few-cost salient object detection
and propose an adversarial-paced learning (APL)-based framework to facilitate
the few-cost learning scenario. Essentially, APL is derived from the self-paced
learning (SPL) regime but it infers the robust learning pace through the
data-driven adversarial learning mechanism rather than the heuristic design of
the learning regularizer. Comprehensive experiments on four widely-used
benchmark datasets demonstrate that the proposed method can effectively
approach to the existing supervised deep salient object detection models with
only 1k human-annotated training images. The project page is available at
https://github.com/hb-stone/FC-SOD.
- Abstract(参考訳): 近年,画像シーンから有能な物体を検出・分別する技術が注目されている。
既存のディープサリエンシー検出モデルのトレーニングにおける基本的な課題は、大量の注釈付きデータの要求である。
大量のトレーニングデータの収集が安価で簡単になる一方で、データの注釈付けは時間、労力、人間の専門知識の面では高価なプロセスである。
そこで本研究では,数枚のトレーニング画像のみに手動アノテーションを施し,効果的なサルエント物体検出モデルを学習し,トレーニングモデルの人的労力を劇的に軽減する手法を提案する。
この目的のために我々は,このタスクを,少額の有能な物体検出と命名し,少数のコストの学習シナリオを促進するために,APL(Adversarial-paced Learning)ベースのフレームワークを提案する。
本質的には、APLは自己評価学習(SPL)体制から派生しているが、学習正規化のヒューリスティックな設計ではなく、データ駆動型対角学習機構を通じて頑健な学習ペースを推定する。
広範に使用されている4つのベンチマークデータセットに関する総合的な実験により、提案手法が既存の教師付き深層物体検出モデルに効果的にアプローチできることが示されている。
プロジェクトページはhttps://github.com/hb-stone/fc-sodで閲覧できる。
関連論文リスト
- EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training [79.96741042766524]
訓練カリキュラムをソフトセレクション機能として再構築する。
自然画像の内容の露光は,データ拡張の強度によって容易に達成できることを示す。
結果のメソッドであるEfficientTrain++は単純で汎用的だが驚くほど効果的である。
論文 参考訳(メタデータ) (2024-05-14T17:00:43Z) - Dynamic Task and Weight Prioritization Curriculum Learning for
Multimodal Imagery [0.5439020425819]
本稿では,カリキュラム学習法を訓練したマルチモーダル深層学習モデルを用いたディザスタ後の分析について検討する。
カリキュラム学習は、ますます複雑なデータに基づいてディープラーニングモデルを訓練することにより、人間の教育における進歩的な学習シーケンスをエミュレートする。
論文 参考訳(メタデータ) (2023-10-29T18:46:33Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
本稿では視覚バックボーン(例えば視覚変換器)の効率的なトレーニングのための新しいカリキュラム学習手法を提案する。
オフザシェルフ方式として、様々な人気モデルのウォールタイムトレーニングコストを、精度を犠牲にすることなく、ImageNet-1K/22Kで1.5倍に削減する。
論文 参考訳(メタデータ) (2022-11-17T17:38:55Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
論文 参考訳(メタデータ) (2022-05-17T13:15:07Z) - Learning from Few Examples: A Summary of Approaches to Few-Shot Learning [3.6930948691311016]
Few-Shot Learningは、いくつかのトレーニングサンプルからデータの基本パターンを学習する問題を指す。
ディープラーニングソリューションは、データ飢餓と、膨大な計算時間とリソースに悩まされている。
機械学習アプリケーション構築のターンアラウンド時間を劇的に短縮できるようなショットラーニングは、低コストのソリューションとして現れます。
論文 参考訳(メタデータ) (2022-03-07T23:15:21Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Puzzle-AE: Novelty Detection in Images through Solving Puzzles [8.999416735254586]
U-Netはこの目的のために有効であることが証明されているが、他のAEベースのフレームワークと同様の再構成エラーを使用することでトレーニングデータに過度に適合する。
この課題に基づいてU-Netをトレーニングすることは、過剰適合を防止し、ピクセルレベルの機能を超えた学習を容易にする効果的な治療法であることを示す。
本稿では,効率的な自動ショートカット除去法として,対向的ロバストトレーニングを提案する。
論文 参考訳(メタデータ) (2020-08-29T10:53:55Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。