論文の概要: Learning and Recognizing Archeological Features from LiDAR Data
- arxiv url: http://arxiv.org/abs/2004.02099v1
- Date: Sun, 5 Apr 2020 05:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 12:37:47.694585
- Title: Learning and Recognizing Archeological Features from LiDAR Data
- Title(参考訳): LiDARデータによる考古学的特徴の学習と認識
- Authors: Conrad M Albrecht, Chris Fisher, Marcus Freitag, Hendrik F Hamann,
Sharathchandra Pankanti, Florencia Pezzutti, Francesca Rossi
- Abstract要約: 本稿では,LiDAR(Light Detection and Ranging)データを処理するリモートセンシングパイプラインを提案する。
本研究の目的は,地域空間と考古学的アーティファクトを教師付きで識別し,ドメインの専門家が必要に応じて柔軟にパラメータを調整できるようにすることである。
- 参考スコア(独自算出の注目度): 8.135393502095909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a remote sensing pipeline that processes LiDAR (Light Detection
And Ranging) data through machine & deep learning for the application of
archeological feature detection on big geo-spatial data platforms such as e.g.
IBM PAIRS Geoscope.
Today, archeologists get overwhelmed by the task of visually surveying huge
amounts of (raw) LiDAR data in order to identify areas of interest for
inspection on the ground. We showcase a software system pipeline that results
in significant savings in terms of expert productivity while missing only a
small fraction of the artifacts.
Our work employs artificial neural networks in conjunction with an efficient
spatial segmentation procedure based on domain knowledge. Data processing is
constraint by a limited amount of training labels and noisy LiDAR signals due
to vegetation cover and decay of ancient structures. We aim at identifying
geo-spatial areas with archeological artifacts in a supervised fashion allowing
the domain expert to flexibly tune parameters based on her needs.
- Abstract(参考訳): 我々は,IBM PAIRS Geoscope などの大規模地理空間データプラットフォームにおける考古学的特徴検出の応用を目的として,LiDAR (Light Detection and Ranging) データを処理するリモートセンシングパイプラインを提案する。
今日、考古学者たちは、地上の検査の関心領域を特定するために、大量のlidarデータを視覚的に調査する作業に圧倒されている。
私たちは、少数のアーティファクトを欠きながら、専門家の生産性という観点でかなりの節約をもたらすソフトウェアシステムパイプラインを紹介します。
本研究は、ニューラルネットワークと、ドメイン知識に基づく効率的な空間分割手順を併用する。
データ処理は、古構造物の植生被覆と崩壊により、限られた量のトレーニングラベルとノイズの多いLiDAR信号によって制限される。
ドメインの専門家が自身のニーズに応じてパラメータを柔軟に調整できるように,考古学的アーティファクトを用いた地理空間領域の識別を監督的に行う。
関連論文リスト
- Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Transfer Learning of Semantic Segmentation Methods for Identifying
Buried Archaeological Structures on LiDAR Data [1.2116854758481392]
本稿では、2つのLiDARデータセット上の2つのセマンティックセグメンテーションディープニューラルネットワークを用いて、様々な伝達学習構成の性能を比較する。
実験結果から, 考古学における伝達学習に基づくアプローチは, 性能改善につながる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-07T11:00:44Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR技術は、都市景観と農村景観の詳細な3次元標高マップを提供するために利用することができる。
現在まで、空中LiDAR画像は、主に環境と考古学の領域に限られている。
我々は、このデータの適合性は、独自のだけでなく、人口統計学的特徴と組み合わせたデータの源でもあると考え、埋め込みの現実的なユースケースを提供する。
論文 参考訳(メタデータ) (2021-12-02T17:10:52Z) - Leveraging Domain Adaptation for Low-Resource Geospatial Machine
Learning [0.0]
多くのラベル付き地理空間データセットは特定の地域、楽器、極端な気象イベントに特化している。
提案した複数の地理空間ベンチマークに対する最新のドメイン適応の適用について検討する。
論文 参考訳(メタデータ) (2021-07-11T06:47:20Z) - Learning to Detect Fortified Areas [0.0]
本研究では,道路,歩道,駐車場,舗装された自動車道,テラスなどによって,ある表面のどの部分が要塞化されているのかを分類する問題を考察する。
本稿では,すべてのセンサシステムからデータを新しい共通表現に変換するニューラルネット埋め込みアーキテクチャを設計し,アルゴリズムによる解を提案する。
論文 参考訳(メタデータ) (2021-05-26T08:03:42Z) - Deep Learning Techniques for Geospatial Data Analysis [0.0]
消費者電子デバイスは、地理空間データと呼ばれる大量の位置情報を連続的に生成している。
近年、このような地理空間データを中心に、多くの有用な一般用途が設計され、展開されている。
近年のディープラーニング技術分野の進歩は、ニューラルネットワークに基づく技術が従来の機械学習技術より優れていることを示している。
論文 参考訳(メタデータ) (2020-08-30T11:51:10Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。