論文の概要: Unsupervised Domain Clusters in Pretrained Language Models
- arxiv url: http://arxiv.org/abs/2004.02105v2
- Date: Fri, 1 May 2020 16:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 12:45:13.708170
- Title: Unsupervised Domain Clusters in Pretrained Language Models
- Title(参考訳): 事前学習言語モデルにおける教師なしドメインクラスタ
- Authors: Roee Aharoni and Yoav Goldberg
- Abstract要約: 大規模事前学習型言語モデルでは,教師なしのドメインによってクラスタ化される文表現を暗黙的に学習する。
このようなモデルに基づくドメインデータ選択手法を提案する。
我々は5つの異なる領域にわたるニューラルネットワーク翻訳のためのデータ選択手法を評価する。
- 参考スコア(独自算出の注目度): 61.832234606157286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The notion of "in-domain data" in NLP is often over-simplistic and vague, as
textual data varies in many nuanced linguistic aspects such as topic, style or
level of formality. In addition, domain labels are many times unavailable,
making it challenging to build domain-specific systems. We show that massive
pre-trained language models implicitly learn sentence representations that
cluster by domains without supervision -- suggesting a simple data-driven
definition of domains in textual data. We harness this property and propose
domain data selection methods based on such models, which require only a small
set of in-domain monolingual data. We evaluate our data selection methods for
neural machine translation across five diverse domains, where they outperform
an established approach as measured by both BLEU and by precision and recall of
sentence selection with respect to an oracle.
- Abstract(参考訳): nlpにおける「ドメイン内データ」の概念は、トピック、スタイル、形式レベルといった多くのニュアンス言語的側面でテキストデータが異なるため、しばしば単純化されあいまいである。
さらに、ドメインラベルは何度も利用できないため、ドメイン固有のシステムを構築するのは難しい。
大量の事前学習された言語モデルでは、教師なしのドメインによってクラスタ化される文表現を暗黙的に学習する。
我々は、この特性を利用して、ドメイン内モノリンガルデータの小さなセットのみを必要とする、そのようなモデルに基づくドメインデータ選択手法を提案する。
我々は,5つの領域にまたがるニューラルマシン翻訳のためのデータ選択法を評価し,BLEUと文選択の精度とリコールの両面で測定された確立されたアプローチよりも優れていることを示した。
関連論文リスト
- Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
テキスト分類の多元的領域一般化について検討する。
本稿では、複数の参照ドメインを使用して、未知のドメインで高い精度を達成可能なモデルをトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T07:46:21Z) - WIDIn: Wording Image for Domain-Invariant Representation in Single-Source Domain Generalization [63.98650220772378]
We present WIDIn, Wording Images for Domain-Invariant representation, to disentangleative discriminative visual representation。
まず、ドメイン固有の言語を適応的に識別し、削除するために使用可能な、きめ細かいアライメントを組み込んだ言語を推定する。
WIDInは、CLIPのような事前訓練された視覚言語モデルと、MoCoやBERTのような個別訓練されたユニモーダルモデルの両方に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-05-28T17:46:27Z) - Domain Private Transformers for Multi-Domain Dialog Systems [2.7013801448234367]
本稿では、条件付き言語モデルがドメイン間でリークする確率を定量化する新しい方法として、ドメインプライバシを提案する。
メンバシップ推論攻撃実験により,本手法は,近年の微分プライベート言語モデルに応用された手法に匹敵するレジリエンスを有することが示された。
論文 参考訳(メタデータ) (2023-05-23T16:27:12Z) - Label-Free Multi-Domain Machine Translation with Stage-wise Training [13.144729358707206]
そこで本研究では,ラベルのないマルチドメイン機械翻訳モデルを提案する。
我々のモデルは3つの部分から構成される: バックボーンモデル、異なるドメインからデータを識別する責任を負うドメイン識別器、デコードされた特徴をジェネリックから特定のものに伝達する専門家のセット。
論文 参考訳(メタデータ) (2023-05-06T06:30:29Z) - SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for
Classification in Low-Resource Domains [14.096170976149521]
SwitchPromptは、汎用ドメインからさまざまな低リソースドメインへのデータセットでトレーニングされた言語モデルを適応するための、新しくて軽量なプロンプト手法である。
筆者らは,SwitchPromptを用いた場合の一般領域事前学習言語モデルの有効性を3つのテキスト分類ベンチマークで検証した。
彼らはしばしば、ベースライン・オブ・ザ・アーツ・プロンプト法で訓練されたドメイン固有の手法を最大10.7%の精度で上回っている。
論文 参考訳(メタデータ) (2023-02-14T07:14:08Z) - Few-Shot Classification in Unseen Domains by Episodic Meta-Learning
Across Visual Domains [36.98387822136687]
興味のあるカテゴリのラベル付き例がほとんどないため、いくつかのショット分類は、分類を実行することを目的としている。
本稿では,ドメイン一般化型少ショット分類のための一意学習フレームワークを提案する。
メタ学習戦略を進めることで、学習フレームワークは複数のソースドメインにまたがるデータを利用して、ドメイン不変の機能をキャプチャします。
論文 参考訳(メタデータ) (2021-12-27T06:54:11Z) - Efficient Domain Adaptation of Language Models via Adaptive Tokenization [5.058301279065432]
ドメイン固有のサブワードシーケンスは,ベースおよびドメイン固有のコーパスの条件付きトークン分布の分岐から,直接的に決定可能であることを示す。
我々の手法は、トークン化器の強化を用いた他の手法よりも、より小さなモデルで、トレーニングや推論の時間が少なくなります。
論文 参考訳(メタデータ) (2021-09-15T17:51:27Z) - FDMT: A Benchmark Dataset for Fine-grained Domain Adaptation in Machine
Translation [53.87731008029645]
機械翻訳(FDMT)における実世界のきめ細かいドメイン適応タスクを提案する。
FDMTデータセットは、自動運転車、AI教育、リアルタイムネットワーク、スマートフォンの4つのサブドメインで構成されている。
この新しい設定で定量的な実験と深い分析を行い、きめ細かいドメイン適応タスクをベンチマークします。
論文 参考訳(メタデータ) (2020-12-31T17:15:09Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。