論文の概要: Domain Private Transformers for Multi-Domain Dialog Systems
- arxiv url: http://arxiv.org/abs/2305.14208v2
- Date: Thu, 7 Dec 2023 19:46:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 19:03:22.783165
- Title: Domain Private Transformers for Multi-Domain Dialog Systems
- Title(参考訳): マルチドメイン対話システムのためのドメインプライベートトランスフォーマー
- Authors: Anmol Kabra, Ethan R. Elenberg
- Abstract要約: 本稿では、条件付き言語モデルがドメイン間でリークする確率を定量化する新しい方法として、ドメインプライバシを提案する。
メンバシップ推論攻撃実験により,本手法は,近年の微分プライベート言語モデルに応用された手法に匹敵するレジリエンスを有することが示された。
- 参考スコア(独自算出の注目度): 2.7013801448234367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large, general purpose language models have demonstrated impressive
performance across many different conversational domains. While multi-domain
language models achieve low overall perplexity, their outputs are not
guaranteed to stay within the domain of a given input prompt. This paper
proposes domain privacy as a novel way to quantify how likely a conditional
language model will leak across domains. We also develop policy functions based
on token-level domain classification, and propose an efficient fine-tuning
method to improve the trained model's domain privacy. Experiments on membership
inference attacks show that our proposed method has comparable resiliency to
methods adapted from recent literature on differentially private language
models.
- Abstract(参考訳): 大規模で汎用的な言語モデルは、多くの異なる会話ドメインで印象的なパフォーマンスを示している。
マルチドメイン言語モデルは全体的なパープレキシティが低いが、その出力は入力プロンプトのドメイン内に留まることは保証されていない。
本稿では、条件付き言語モデルがドメイン間でリークする確率を定量化する新しい方法として、ドメインプライバシを提案する。
また,トークンレベルのドメイン分類に基づくポリシ関数を開発し,トレーニングモデルのドメインプライバシを改善するための効率的な微調整手法を提案する。
メンバシップ推論攻撃の実験により,提案手法は,微分プライベート言語モデルにおける最近の文献から適応した手法と同等の弾力性を有することが示された。
関連論文リスト
- Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
テキスト分類の多元的領域一般化について検討する。
本稿では、複数の参照ドメインを使用して、未知のドメインで高い精度を達成可能なモデルをトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T07:46:21Z) - StylePrompter: Enhancing Domain Generalization with Test-Time Style Priors [39.695604434738186]
実世界のアプリケーションでは、推論段階でのサンプル分布は、トレーニング段階でのものとしばしば異なる。
本稿では,訓練されたモデルを動的に適応させるために,言語モダリティのスタイルプロンプトを紹介する。
特に,現在の画像のスタイル情報をトークン埋め込み空間に埋め込むように,スタイルプロンサを訓練する。
スタイルトークン埋め込み空間と手作りスタイル正規化のオープンスペース分割により、トレーニング済みのスタイルプロンサが未知のドメインからのデータを効率的に処理できるようになる。
論文 参考訳(メタデータ) (2024-08-17T08:35:43Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
文パターン構造解析(SPS)は、主に言語教育に使用される構文解析法である。
既存のSPSは教科書のコーパスに大きく依存しており、クロスドメイン機能に欠ける。
本稿では,大規模言語モデル(LLM)を自己学習フレームワーク内で活用する革新的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T05:30:48Z) - SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for
Classification in Low-Resource Domains [14.096170976149521]
SwitchPromptは、汎用ドメインからさまざまな低リソースドメインへのデータセットでトレーニングされた言語モデルを適応するための、新しくて軽量なプロンプト手法である。
筆者らは,SwitchPromptを用いた場合の一般領域事前学習言語モデルの有効性を3つのテキスト分類ベンチマークで検証した。
彼らはしばしば、ベースライン・オブ・ザ・アーツ・プロンプト法で訓練されたドメイン固有の手法を最大10.7%の精度で上回っている。
論文 参考訳(メタデータ) (2023-02-14T07:14:08Z) - QAGAN: Adversarial Approach To Learning Domain Invariant Language
Features [0.76146285961466]
ドメイン不変の特徴を学習するための敵対的学習手法について検討する。
EMスコアが15.2%改善され、ドメイン外の検証データセットでF1スコアが5.6%向上しました。
論文 参考訳(メタデータ) (2022-06-24T17:42:18Z) - Efficient Hierarchical Domain Adaptation for Pretrained Language Models [77.02962815423658]
生成言語モデルは、多種多様な一般的なドメインコーパスに基づいて訓練される。
計算効率のよいアダプタアプローチを用いて,ドメイン適応を多種多様なドメインに拡張する手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T11:09:29Z) - Efficient Domain Adaptation of Language Models via Adaptive Tokenization [5.058301279065432]
ドメイン固有のサブワードシーケンスは,ベースおよびドメイン固有のコーパスの条件付きトークン分布の分岐から,直接的に決定可能であることを示す。
我々の手法は、トークン化器の強化を用いた他の手法よりも、より小さなモデルで、トレーニングや推論の時間が少なくなります。
論文 参考訳(メタデータ) (2021-09-15T17:51:27Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Unsupervised Domain Clusters in Pretrained Language Models [61.832234606157286]
大規模事前学習型言語モデルでは,教師なしのドメインによってクラスタ化される文表現を暗黙的に学習する。
このようなモデルに基づくドメインデータ選択手法を提案する。
我々は5つの異なる領域にわたるニューラルネットワーク翻訳のためのデータ選択手法を評価する。
論文 参考訳(メタデータ) (2020-04-05T06:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。