論文の概要: Large-scale spatiotemporal photonic reservoir computer for image
classification
- arxiv url: http://arxiv.org/abs/2004.02542v1
- Date: Mon, 6 Apr 2020 10:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 06:44:33.152480
- Title: Large-scale spatiotemporal photonic reservoir computer for image
classification
- Title(参考訳): 画像分類のための大規模時空間フォトニックリザーバコンピュータ
- Authors: Piotr Antonik, Nicolas Marsal, Damien Rontani
- Abstract要約: 本稿では,手書き桁の分類を行うために,フィードフォワードとリカレントニューラルネットワークを実装するためのスケーラブルなフォトニックアーキテクチャを提案する。
実験では、既製の光学部品と電子部品を利用して、現在16,384ノードのネットワークサイズを実現している。
- 参考スコア(独自算出の注目度): 0.8701566919381222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scalable photonic architecture for implementation of feedforward
and recurrent neural networks to perform the classification of handwritten
digits from the MNIST database. Our experiment exploits off-the-shelf optical
and electronic components to currently achieve a network size of 16,384 nodes.
Both network types are designed within the the reservoir computing paradigm
with randomly weighted input and hidden layers. Using various feature
extraction techniques (e.g. histograms of oriented gradients, zoning, Gabor
filters) and a simple training procedure consisting of linear regression and
winner-takes-all decision strategy, we demonstrate numerically and
experimentally that a feedforward network allows for classification error rate
of 1%, which is at the state-of-the-art for experimental implementations and
remains competitive with more advanced algorithmic approaches. We also
investigate recurrent networks in numerical simulations by explicitly
activating the temporal dynamics, and predict a performance improvement over
the feedforward configuration.
- Abstract(参考訳): 本稿では,MNISTデータベースから手書き桁の分類を行うために,フィードフォワードとリカレントニューラルネットワークを実装するためのスケーラブルなフォトニックアーキテクチャを提案する。
本実験では,市販の光学部品と電子部品を用いて,現在16,384ノードのネットワークサイズを実現する。
どちらのネットワークタイプもランダムに重み付けされた入力層と隠れ層を持つリザーバコンピューティングパラダイム内で設計されている。
様々な特徴抽出手法(例えば、配向勾配のヒストグラム、ゾンニング、ガボルフィルタ)と線形回帰と全ての決定戦略からなる単純な訓練手法を用いて、フィードフォワードネットワークが1%の分類誤り率を許容し、これは実験的な実装の最先端であり、より先進的なアルゴリズムアプローチと競合し続けていることを数値的および実験的に証明する。
また,時間ダイナミクスを明示的に活性化し,数値シミュレーションにおける再帰ネットワークを調査し,フィードフォワード構成による性能改善を予測した。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
カスケード予測は,ネットワーク内の情報拡散をモデル化することを目的とした。
グラフニューラルネットワークとリカレントニューラルネットワークによるネットワーク構造とシーケンス特徴の組み合わせに関する研究
本稿では,個々のプロファイル,構造特徴,シーケンス情報を考慮した新しいCCasGNNを提案する。
論文 参考訳(メタデータ) (2021-12-07T11:37:36Z) - A Greedy Algorithm for Quantizing Neural Networks [4.683806391173103]
本稿では,事前学習したニューラルネットワークの重みを定量化するための計算効率のよい新しい手法を提案する。
本手法は,複雑な再学習を必要とせず,反復的に層を定量化する手法である。
論文 参考訳(メタデータ) (2020-10-29T22:53:10Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
本稿では,多層スパイキングニューラルネットワークを学習して分類問題を解くための教師あり学習手法を提案する。
提案した学習規則は、隠れニューロンが発する複数のスパイクをサポートし、決定論的出力層によって生成された最初のスパイク応答に依存することにより安定である。
また、入力データのコンパクト表現を形成するために、いくつかの異なるスパイクベースの符号化戦略についても検討する。
論文 参考訳(メタデータ) (2020-08-16T15:34:48Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
本稿では,バックプロパゲーションよりもかなり高速なフィードフォワードニューラルネットワークのトレーニングアルゴリズムを提案する。
提案アルゴリズムは、それぞれバックプロジェクションとカーネルバックプロジェクションと呼ばれる入力空間と特徴空間の両方に利用できる。
論文 参考訳(メタデータ) (2020-04-05T20:53:11Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。