論文の概要: Joint Embedding of Words and Category Labels for Hierarchical
Multi-label Text Classification
- arxiv url: http://arxiv.org/abs/2004.02555v3
- Date: Wed, 26 Aug 2020 03:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 05:17:11.294900
- Title: Joint Embedding of Words and Category Labels for Hierarchical
Multi-label Text Classification
- Title(参考訳): 階層型マルチラベルテキスト分類のための単語とカテゴリラベルの結合埋め込み
- Authors: Jingpeng Zhao and Yinglong Ma
- Abstract要約: 階層的テキスト分類(HTC)は広く注目されており、幅広い応用の見通しがある。
本稿では,HTC の階層的微調整順序ニューロン LSTM (HFT-ONLSTM) に基づくテキストと親カテゴリの結合埋め込みを提案する。
- 参考スコア(独自算出の注目度): 4.2750700546937335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text classification has become increasingly challenging due to the continuous
refinement of classification label granularity and the expansion of
classification label scale. To address that, some research has been applied
onto strategies that exploit the hierarchical structure in problems with a
large number of categories. At present, hierarchical text classification (HTC)
has received extensive attention and has broad application prospects. Making
full use of the relationship between parent category and child category in text
classification task can greatly improve the performance of classification. In
this paper, We propose a joint embedding of text and parent category based on
hierarchical fine-tuning ordered neurons LSTM (HFT-ONLSTM) for HTC. Our method
makes full use of the connection between the upper-level and lower-level
labels. Experiments show that our model outperforms the state-of-the-art
hierarchical model at a lower computation cost.
- Abstract(参考訳): 分類ラベルの粒度が改良され,分類ラベルスケールが拡張されるなど,テキスト分類はますます困難になっている。
これに対処するために、多くのカテゴリの問題において階層構造を利用する戦略にいくつかの研究が適用されている。
現在、階層的テキスト分類(HTC)は広く注目されており、幅広い応用の見通しがある。
テキスト分類タスクにおける親カテゴリと子カテゴリの関係をフル活用することで、分類性能を大幅に向上させることができる。
本稿では,HTC 用階層型微調整順序ニューロン LSTM (HFT-ONLSTM) に基づくテキストと親カテゴリの結合埋め込みを提案する。
本手法では,上層ラベルと下層ラベルの接続を最大限に活用する。
実験により,我々のモデルは計算コストの低い最先端階層モデルよりも優れていた。
関連論文リスト
- HiGen: Hierarchy-Aware Sequence Generation for Hierarchical Text
Classification [19.12354692458442]
階層的テキスト分類 (HTC) は、マルチラベルテキスト分類における複雑なサブタスクである。
動的テキスト表現を符号化する言語モデルを利用したテキスト生成フレームワークHiGenを提案する。
論文 参考訳(メタデータ) (2024-01-24T04:44:42Z) - Hierarchical Multi-Label Classification of Scientific Documents [47.293189105900524]
我々はSciHTCと呼ばれる科学論文の階層的多ラベルテキスト分類のための新しいデータセットを提案する。
このデータセットは、ACM CCSツリーから186,160の論文と1,233のカテゴリを含んでいる。
我々の最良のモデルでは、マクロF1スコアが34.57%に達し、このデータセットが大きな研究機会を提供することを示す。
論文 参考訳(メタデータ) (2022-11-05T04:12:57Z) - Many-Class Text Classification with Matching [65.74328417321738]
textbfText textbfClassification をテキストとラベル間のtextbfMatching 問題として定式化し,TCM というシンプルなフレームワークを提案する。
従来のテキスト分類手法と比較して、TCMは分類ラベルのきめ細かい意味情報を活用している。
論文 参考訳(メタデータ) (2022-05-23T15:51:19Z) - HFT-ONLSTM: Hierarchical and Fine-Tuning Multi-label Text Classification [7.176984223240199]
階層型マルチラベルテキスト分類(HMTC)は,近縁なカテゴリの大規模集合よりも高精度である。
本稿では,HFT-ONLSTMと略される順序付きニューラルLSTMニューラルネットワークをベースとした階層的・微調整手法を提案し,より正確なレベル・バイ・レベルHMTCを提案する。
論文 参考訳(メタデータ) (2022-04-18T00:57:46Z) - Constrained Sequence-to-Tree Generation for Hierarchical Text
Classification [10.143177923523407]
階層的テキスト分類(HTC)は、分類学内で複数の階層的に構造化されたカテゴリに文書を割り当てる難易度の高いタスクである。
本稿では,HTCをシーケンス生成タスクとして定式化し,階層的なラベル構造をモデル化するためのシーケンス・ツー・ツリー・フレームワーク(Seq2Tree)を導入する。
論文 参考訳(メタデータ) (2022-04-02T08:35:39Z) - Label Hierarchy Transition: Delving into Class Hierarchies to Enhance
Deep Classifiers [40.993137740456014]
本稿では,階層型分類の課題に対処するために,ディープラーニングに基づく統一確率的フレームワークを提案する。
提案するフレームワークは、わずかに修正するだけで、既存のディープネットワークに容易に適応できる。
提案するLHTフレームワークを皮膚病変診断タスクに拡張し,コンピュータ支援診断におけるその大きな可能性を検証した。
論文 参考訳(メタデータ) (2021-12-04T14:58:36Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCHはメタデータと階層情報の両方を利用するエンドツーエンドのフレームワークである。
親による各子ラベルのパラメータと出力確率を正規化するさまざまな方法を提案します。
大規模なラベル階層を持つ2つの大規模なテキストデータセットの実験は、MATCHの有効性を示しています。
論文 参考訳(メタデータ) (2021-02-15T05:23:08Z) - Coherent Hierarchical Multi-Label Classification Networks [56.41950277906307]
C-HMCNN(h)はHMC問題に対する新しいアプローチであり、階層情報を利用して制約に整合した予測を生成し、性能を向上させる。
最先端モデルと比較してC-HMCNN(h)の優れた性能を示す広範囲な実験的検討を行った。
論文 参考訳(メタデータ) (2020-10-20T09:37:02Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
提案手法は,Recall@50において,複数の最先端ベースラインを大きなマージン(最大33%の相対利得)で改善することができる。
実験により,提案手法により,最先端のベースラインを大きなマージンで改善できることが示された。
論文 参考訳(メタデータ) (2020-09-12T17:36:53Z) - Description Based Text Classification with Reinforcement Learning [34.18824470728299]
本稿では,各カテゴリのラベルをカテゴリ記述に関連付ける,テキスト分類のための新しいフレームワークを提案する。
我々は、幅広いテキスト分類タスクにおいて、強いベースラインよりも顕著なパフォーマンス向上を観察する。
論文 参考訳(メタデータ) (2020-02-08T02:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。