論文の概要: Coherent Hierarchical Multi-Label Classification Networks
- arxiv url: http://arxiv.org/abs/2010.10151v1
- Date: Tue, 20 Oct 2020 09:37:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:20:14.123411
- Title: Coherent Hierarchical Multi-Label Classification Networks
- Title(参考訳): コヒーレント階層型マルチラベル分類ネットワーク
- Authors: Eleonora Giunchiglia, Thomas Lukasiewicz
- Abstract要約: C-HMCNN(h)はHMC問題に対する新しいアプローチであり、階層情報を利用して制約に整合した予測を生成し、性能を向上させる。
最先端モデルと比較してC-HMCNN(h)の優れた性能を示す広範囲な実験的検討を行った。
- 参考スコア(独自算出の注目度): 56.41950277906307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical multi-label classification (HMC) is a challenging classification
task extending standard multi-label classification problems by imposing a
hierarchy constraint on the classes. In this paper, we propose C-HMCNN(h), a
novel approach for HMC problems, which, given a network h for the underlying
multi-label classification problem, exploits the hierarchy information in order
to produce predictions coherent with the constraint and improve performance. We
conduct an extensive experimental analysis showing the superior performance of
C-HMCNN(h) when compared to state-of-the-art models.
- Abstract(参考訳): 階層的マルチラベル分類(Hierarchical Multi-label classification, HMC)は、階層的制約をクラスに課すことにより、標準マルチラベル分類問題を拡張する挑戦的な分類課題である。
本稿では,hmc問題に対する新たなアプローチであるc-hmcnn(h)を提案し,下位のマルチラベル分類問題に対してネットワークhが与えられ,階層情報を利用して制約に準拠した予測を生成し,性能を向上させる。
最先端モデルと比較してC-HMCNN(h)の優れた性能を示す広範な実験的検討を行った。
関連論文リスト
- Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Semantic Guided Level-Category Hybrid Prediction Network for
Hierarchical Image Classification [8.456482280676884]
階層分類(HC)は、各オブジェクトに階層構造にまとめられた複数のラベルを割り当てる。
本稿では,そのレベルとカテゴリの予測をエンドツーエンドで共同で行うことのできる,セマンティックガイド付き階層型ハイブリッド予測ネットワーク(SGLCHPN)を提案する。
論文 参考訳(メタデータ) (2022-11-22T13:49:10Z) - HFT-ONLSTM: Hierarchical and Fine-Tuning Multi-label Text Classification [7.176984223240199]
階層型マルチラベルテキスト分類(HMTC)は,近縁なカテゴリの大規模集合よりも高精度である。
本稿では,HFT-ONLSTMと略される順序付きニューラルLSTMニューラルネットワークをベースとした階層的・微調整手法を提案し,より正確なレベル・バイ・レベルHMTCを提案する。
論文 参考訳(メタデータ) (2022-04-18T00:57:46Z) - Label Relation Graphs Enhanced Hierarchical Residual Network for
Hierarchical Multi-Granularity Classification [10.449261628173229]
本研究では,階層の任意のレベルにオブジェクトをラベル付けするHMC問題について検討する。
子どもの特徴に残差接続を付加する階層的残差ネットワーク(HRN)を提案する。
論文 参考訳(メタデータ) (2022-01-10T07:17:24Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - Multi-Label Classification Neural Networks with Hard Logical Constraints [45.99924614659817]
階層的多ラベル分類(HMC)問題に対する新しいアプローチを提案する。
c-hmcnn(h)は階層情報を利用して、制約に準拠した予測を生成し、性能を向上させる。
また、c-hmcnn(h)を拡張し、再び制約を満たし、性能を向上させることができる新しいモデルccn(h)を提案する。
論文 参考訳(メタデータ) (2021-03-24T18:13:56Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
マルチタスクアプローチは,現在のベンチマークで7%のマイクロf1コアを改善できることを示す。
また,NLPにおける資源不足問題に対処するための追加手法の比較検討を行った。
論文 参考訳(メタデータ) (2021-01-02T07:13:41Z) - Joint Embedding of Words and Category Labels for Hierarchical
Multi-label Text Classification [4.2750700546937335]
階層的テキスト分類(HTC)は広く注目されており、幅広い応用の見通しがある。
本稿では,HTC の階層的微調整順序ニューロン LSTM (HFT-ONLSTM) に基づくテキストと親カテゴリの結合埋め込みを提案する。
論文 参考訳(メタデータ) (2020-04-06T11:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。