論文の概要: Answering Complex Queries in Knowledge Graphs with Bidirectional
Sequence Encoders
- arxiv url: http://arxiv.org/abs/2004.02596v4
- Date: Thu, 4 Feb 2021 11:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 05:34:30.073986
- Title: Answering Complex Queries in Knowledge Graphs with Bidirectional
Sequence Encoders
- Title(参考訳): 双方向シーケンスエンコーダを用いた知識グラフにおける複雑クエリの解法
- Authors: Bhushan Kotnis, Carolin Lawrence, Mathias Niepert
- Abstract要約: 本稿では,双方向アテンション機構に基づくモデルで共役クエリを埋め込む手法であるBi-Directional Query Embedding (BIQE)を提案する。
本稿では,BIQEがアートベースラインを著しく上回ることを示す,結合クエリの解答を予測するための新しいデータセットを提案する。
- 参考スコア(独自算出の注目度): 22.63481666560029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning for knowledge graphs (KGs) has focused on the problem
of answering simple link prediction queries. In this work we address the more
ambitious challenge of predicting the answers of conjunctive queries with
multiple missing entities. We propose Bi-Directional Query Embedding (BIQE), a
method that embeds conjunctive queries with models based on bi-directional
attention mechanisms. Contrary to prior work, bidirectional self-attention can
capture interactions among all the elements of a query graph. We introduce a
new dataset for predicting the answer of conjunctive query and conduct
experiments that show BIQE significantly outperforming state of the art
baselines.
- Abstract(参考訳): 知識グラフ(KG)の表現学習は,単純なリンク予測クエリに答えることに重点を置いている。
この作業では、複数の欠落したエンティティによる結合クエリの答えを予測するという、より野心的な課題に対処します。
本稿では,双方向アテンション機構に基づくモデルで共役クエリを埋め込む手法であるBi-Directional Query Embedding (BIQE)を提案する。
以前の作業とは対照的に、双方向の自己注意はクエリグラフのすべての要素間の相互作用をキャプチャすることができる。
本稿では,BIQEがアートベースラインを著しく上回ることを示す,結合クエリの解答を予測するための新しいデータセットを提案する。
関連論文リスト
- One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
我々は,知識グラフ上の任意の共役クエリに対する回答を分類可能なグラフニューラルネットワークモデルであるAnyCQを提案する。
我々は、AnyCQが任意の構造を持つ大規模クエリに一般化できることを示し、既存のアプローチが失敗するサンプルに対する回答を確実に分類し、検索する。
論文 参考訳(メタデータ) (2024-09-21T00:30:44Z) - QAGCF: Graph Collaborative Filtering for Q&A Recommendation [58.21387109664593]
質問と回答(Q&A)プラットフォームは通常、ユーザの知識獲得のニーズを満たすために質問と回答のペアを推奨する。
これにより、ユーザの振る舞いがより複雑になり、Q&Aレコメンデーションの2つの課題が提示される。
グラフニューラルネットワークモデルであるQ&Answer Graph Collaborative Filtering (QAGCF)を導入する。
論文 参考訳(メタデータ) (2024-06-07T10:52:37Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
複雑な論理クエリ応答(CLQA)は、グラフ機械学習の最近登場したタスクである。
ニューラルグラフデータベース(NGDB)の概念を紹介する。
NGDBはNeural Graph StorageとNeural Graph Engineで構成されている。
論文 参考訳(メタデータ) (2023-03-26T04:03:37Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
本稿では,知識グラフにエッジを欠いた複雑な論理的クエリに応答するクエリ埋め込み手法を提案する。
回答エンティティは、エンティティの埋め込みとクエリの埋め込みの類似性に応じて選択される。
埋め込み空間上の様々な領域から多様な回答を検索するために,複雑なKGクエリ応答方法Q2Pを提案する。
論文 参考訳(メタデータ) (2022-04-27T11:16:08Z) - Semantic Structure based Query Graph Prediction for Question Answering
over Knowledge Graph [5.5332967798665305]
本稿では,自然言語質問からクエリグラフを生成することに焦点を当てる。
クエリグラフ生成のための既存のアプローチは、質問の意味構造を無視している。
本研究では,質問の意味的構造を予測する新しい構造BERTを提案する。
論文 参考訳(メタデータ) (2022-04-15T20:35:00Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
我々は,質問文,質問文,回答文のペア間のスコアを計算するための最先端(SOTA)モデルを訓練し,統合する。
オンライン推論は、目に見えないクエリのAS2タスクを解決するために実行される。
論文 参考訳(メタデータ) (2022-02-16T05:59:53Z) - Outlining and Filling: Hierarchical Query Graph Generation for Answering
Complex Questions over Knowledge Graph [16.26384829957165]
クエリグラフを構築するための新しい2段階のアプローチを提案する。
最初の段階では、上位$kの関連インスタンスは単純な戦略で収集される。
第2段階では、グラフ生成モデルが階層生成を行う。
論文 参考訳(メタデータ) (2021-11-01T07:08:46Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
マルチホップ論理推論は知識グラフ上の表現学習の分野で確立された問題である。
我々はマルチホップ推論問題をハイパーリレーショナルなKGに拡張し、この新しいタイプの複雑なクエリに対処する。
論文 参考訳(メタデータ) (2021-06-15T14:08:50Z) - Message Passing Query Embedding [4.035753155957698]
本稿では,クエリのグラフ表現を符号化するグラフニューラルネットワークを提案する。
モデルは、明示的な監督なしにエンティティタイプの概念を捉えたエンティティ埋め込みを学習することを示します。
論文 参考訳(メタデータ) (2020-02-06T17:40:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。