Quantum-Assisted Graph Clustering and Quadratic Unconstrained D-ary
Optimisation
- URL: http://arxiv.org/abs/2004.02608v3
- Date: Mon, 22 Feb 2021 18:50:42 GMT
- Title: Quantum-Assisted Graph Clustering and Quadratic Unconstrained D-ary
Optimisation
- Authors: Sayantan Pramanik, M Girish Chandra
- Abstract summary: This paper examines unsupervised graph clustering by quantum algorithms or, more precisely, quantum-assisted algorithms.
A qudit circuit to solve max-d cut through Quantum Approximate Optimization algorithm is constructed.
- Score: 1.4653008985229616
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Of late, we are witnessing spectacular developments in Quantum Information
Processing with the availability of Noisy Intermediate-Scale Quantum devices of
different architectures and various software development kits to work on
quantum algorithms. Different problems, which are hard to solve by classical
computation, but can be sped up (significantly in some cases) are also being
populated. Leveraging these aspects, this paper examines unsupervised graph
clustering by quantum algorithms or, more precisely, quantum-assisted
algorithms. By carefully examining the two cluster Max-Cut problem within the
framework of quantum Ising model, an extension has been worked out for max
3-cut with the identification of an appropriate Hamiltonian. Representative
results, after carrying out extensive numerical evaluations, have been provided
including a suggestion for possible futuristic implementation with qutrit
devices. Further, extrapolation to more than 3 classes, which can be handled by
qudits, of both annealer and gate-circuit varieties, has also been touched upon
with some preliminary observations; quantum-assisted solving of Quadratic
Unconstrained D-ary Optimisation is arrived at within this context. As an
additional novelty, a qudit circuit to solve max-d cut through Quantum
Approximate Optimization algorithm is systematically constructed.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
This paper proposes a two-loop quantum solution algorithm for generation scheduling by quantum computing, machine learning, and distributed optimization.
The aim is to facilitate noisy employing near-term quantum machines with a limited number of qubits to solve practical power system problems.
arXiv Detail & Related papers (2023-03-28T21:31:39Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.