論文の概要: Lossless Image Compression through Super-Resolution
- arxiv url: http://arxiv.org/abs/2004.02872v1
- Date: Mon, 6 Apr 2020 17:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 06:30:08.179046
- Title: Lossless Image Compression through Super-Resolution
- Title(参考訳): 超解像によるロスレス画像圧縮
- Authors: Sheng Cao, Chao-Yuan Wu, Philipp Kr\"ahenb\"uhl
- Abstract要約: Super-Resolution based Compression (SReC)は、大規模なデータセット上で実用的なランタイムで最先端の圧縮速度を達成することができる。
- 参考スコア(独自算出の注目度): 9.392167468538464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simple and efficient lossless image compression algorithm. We
store a low resolution version of an image as raw pixels, followed by several
iterations of lossless super-resolution. For lossless super-resolution, we
predict the probability of a high-resolution image, conditioned on the
low-resolution input, and use entropy coding to compress this super-resolution
operator. Super-Resolution based Compression (SReC) is able to achieve
state-of-the-art compression rates with practical runtimes on large datasets.
Code is available online at https://github.com/caoscott/SReC.
- Abstract(参考訳): 単純で効率的なロスレス画像圧縮アルゴリズムを提案する。
画像の低解像度バージョンを生のピクセルとして保存し、その後数回のロスレス超解像度を繰り返す。
ロスレス超解像の場合、低分解能入力に条件付き高分解能画像の確率を予測し、エントロピー符号化を用いて超解像演算子を圧縮する。
Super-Resolution based Compression (SReC)は、大規模なデータセット上で実用的なランタイムで最先端の圧縮速度を達成することができる。
コードはhttps://github.com/caoscott/srec.comで入手できる。
関連論文リスト
- Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
前例のないインテリジェンスを持つ言語大モデル(LLM)は、様々なデータモダリティのための汎用ロスレス圧縮機である。
P$2$-LLMは,様々な入念な洞察と方法論を統合した次世代の予測型LLMである。
ベンチマークデータセットの実験では、P$2$-LLMがSOTAの古典的および学習的コーデックに勝ることを示した。
論文 参考訳(メタデータ) (2024-11-19T12:15:40Z) - RAGE for the Machine: Image Compression with Low-Cost Random Access for
Embedded Applications [5.199703527082964]
RAGEは画像圧縮フレームワークで、一般的に矛盾する4つの目的を達成する。
RAGEは、最先端のロスレス画像圧縮機と類似またはより良い圧縮比を有することを示す。
また、RAGE-Qは、組込みグラフィックスの歪みという点でJPEGを数倍上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-07T19:28:33Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
本稿では,無損失圧縮と無損失圧縮を統一的に組み合わせた後学習モデルサイズ圧縮法を提案する。
精度を犠牲にすることなく安定な10times$圧縮比を達成でき、短時間で20times$圧縮比を小さくすることができる。
論文 参考訳(メタデータ) (2023-08-08T14:10:16Z) - Device Interoperability for Learned Image Compression with Weights and
Activations Quantization [1.373801677008598]
本稿では,最先端の画像圧縮ネットワークのデバイス相互運用性問題を解決する手法を提案する。
本稿では,クロスプラットフォームの符号化と復号化を保証し,高速に実装できる簡易な手法を提案する。
論文 参考訳(メタデータ) (2022-12-02T17:45:29Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - PILC: Practical Image Lossless Compression with an End-to-end GPU
Oriented Neural Framework [88.18310777246735]
本稿では,1台のNVIDIA Tesla V100 GPUを用いて,圧縮と圧縮の両面で200MB/sを実現するエンドツーエンド画像圧縮フレームワークを提案する。
実験により、我々のフレームワークは、複数のデータセットで30%のマージンで、PNGよりも圧縮が優れていることが示された。
論文 参考訳(メタデータ) (2022-06-10T03:00:10Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
本稿では,改良されたインバーチブルを提案する。
非可逆ニューラルネットワーク(INN)によるネットワークは、情報損失問題を大幅に軽減し、圧縮性を向上する。
Kodak, CLIC, Tecnick のデータセットによる実験結果から,本手法は既存の学習画像圧縮法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-08-08T17:32:10Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
ウェブやモバイルデバイスのほとんどのビデオは圧縮され、帯域幅が制限されると圧縮は厳しい。
圧縮によるアーティファクトを導入せずに高解像度コンテンツを復元する圧縮インフォームドビデオ超解像モデルを提案する。
論文 参考訳(メタデータ) (2021-05-04T01:24:44Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
本稿では,$ell_infty$-constrained near-lossless image compressionを学習するための新しいフレームワークを提案する。
元の残差の学習確率モデルを定量化し、量子化残差の確率モデルを導出する。
論文 参考訳(メタデータ) (2021-03-31T11:53:36Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。