論文の概要: Query Focused Multi-Document Summarization with Distant Supervision
- arxiv url: http://arxiv.org/abs/2004.03027v1
- Date: Mon, 6 Apr 2020 22:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 06:02:37.039542
- Title: Query Focused Multi-Document Summarization with Distant Supervision
- Title(参考訳): 遠隔監視によるクエリ集中型マルチドキュメント要約
- Authors: Yumo Xu and Mirella Lapata
- Abstract要約: 既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
- 参考スコア(独自算出の注目度): 88.39032981994535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of better modeling query-cluster interactions to
facilitate query focused multi-document summarization (QFS). Due to the lack of
training data, existing work relies heavily on retrieval-style methods for
estimating the relevance between queries and text segments. In this work, we
leverage distant supervision from question answering where various resources
are available to more explicitly capture the relationship between queries and
documents. We propose a coarse-to-fine modeling framework which introduces
separate modules for estimating whether segments are relevant to the query,
likely to contain an answer, and central. Under this framework, a trained
evidence estimator further discerns which retrieved segments might answer the
query for final selection in the summary. We demonstrate that our framework
outperforms strong comparison systems on standard QFS benchmarks.
- Abstract(参考訳): 本稿では,クエリ中心のマルチドキュメント要約(QFS)を容易にするために,クエリクラスタ間相互作用をモデル化する問題を考える。
トレーニングデータがないため、既存の作業はクエリとテキストセグメントの関係を推定する検索スタイルの手法に大きく依存している。
本研究では,クエリとドキュメントの関係をより明確に把握するために,質問応答から遠方からの監視を活用する。
本稿では,問合せに関連があるか,回答を含む可能性が高いか,中央値を含むかを推定するモジュールを分離して導入する,粗粒度モデリングフレームワークを提案する。
この枠組みの下で、訓練されたエビデンス推定者は、検索されたセグメントが要約の最後の選択のためにクエリに答えるかもしれないかどうかをさらに識別する。
我々のフレームワークは、標準QFSベンチマークにおいて強力な比較システムより優れていることを示す。
関連論文リスト
- Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIERは、構造、キーワード、セマンティックという3つのタイプの相互作用を考慮し、ドキュメントチャンク間の内部接続をキャプチャする。
対象の質問に基づいて複数のシードノードを特定し、関連するチャンクを反復的に検索して、支持する証拠を収集する。
コンテキストと推論チェーンを洗練し、推論と回答の生成において大きな言語モデルを支援する。
論文 参考訳(メタデータ) (2024-08-06T02:39:55Z) - Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation [16.170841777591345]
Dianpingのようなほとんどのソーシャル検索シナリオでは、検索関連性のモデリングは常に2つの課題に直面している。
まず、クエリベースの要約と、クエリなしで文書の要約をトピック関連モデルの入力として取り上げる。
そこで我々は,大規模言語モデル(LLM)の言語理解と生成能力を利用して,既存のトレーニングデータにおけるクエリやドキュメントからのクエリを書き換え,生成する。
論文 参考訳(メタデータ) (2024-04-03T10:05:47Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - Query-Utterance Attention with Joint modeling for Query-Focused Meeting
Summarization [4.763356598070365]
本稿では,クエリ・Utterance Attentionに基づく共同モデリングトークンと発話を用いた問合せ対応フレームワークを提案する。
異なる粒度のクエリ関連性は、クエリに関連する要約を生成するのに寄与することを示す。
論文 参考訳(メタデータ) (2023-03-08T10:21:45Z) - MQAG: Multiple-choice Question Answering and Generation for Assessing
Information Consistency in Summarization [55.60306377044225]
最先端の要約システムは高度に流動的な要約を生成することができる。
しかし、これらの要約には、情報源に存在しない事実上の矛盾や情報が含まれている可能性がある。
本稿では,ソース情報と要約情報を直接比較する,標準的な情報理論に基づく代替手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T23:08:25Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - Improve Query Focused Abstractive Summarization by Incorporating Answer
Relevance [43.820971952979875]
本稿では,QFS-BARTモデルを提案する。QFS-BARTは,質問応答モデルによって与えられたソース文書の明示的な回答関連性を組み込んだモデルである。
我々のモデルは, 要約性能を大幅に向上させる, 事前学習された大規模モデルを利用することができる。
Debatepediaデータセットの実証結果は、提案したモデルが新しい最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2021-05-27T06:58:42Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
本稿では,汎用的な要約リソースのみを利用して抽象的なqfsシステムを構築する問題を考える。
本稿では,要約とクエリのための新しい統一表現からなるMasked ROUGE回帰フレームワークであるMargeを提案する。
最小限の監視から学習したにもかかわらず,遠隔管理環境において最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-12-29T14:39:35Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
文選択のためのモデルの2つのグループについて述べる。QAベースのアプローチは、解答候補を特定するための完全なQAシステムを実行し、検索ベースのモデルは、各質問に特に関連する各節の一部を見つける。
非常に軽量なQAモデルは、このタスクではうまく機能するが、検索ベースモデルは高速である。
論文 参考訳(メタデータ) (2020-09-18T23:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。