Manifold-driven Attention Maps for Weakly Supervised Segmentation
- URL: http://arxiv.org/abs/2004.03046v1
- Date: Tue, 7 Apr 2020 00:03:28 GMT
- Title: Manifold-driven Attention Maps for Weakly Supervised Segmentation
- Authors: Sukesh Adiga V, Jose Dolz, Herve Lombaert
- Abstract summary: We propose a manifold driven attention-based network to enhance visual salient regions.
Our method generates superior attention maps directly during inference without the need of extra computations.
- Score: 9.289524646688244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation using deep learning has shown promising directions in medical
imaging as it aids in the analysis and diagnosis of diseases. Nevertheless, a
main drawback of deep models is that they require a large amount of pixel-level
labels, which are laborious and expensive to obtain. To mitigate this problem,
weakly supervised learning has emerged as an efficient alternative, which
employs image-level labels, scribbles, points, or bounding boxes as
supervision. Among these, image-level labels are easier to obtain. However,
since this type of annotation only contains object category information, the
segmentation task under this learning paradigm is a challenging problem. To
address this issue, visual salient regions derived from trained classification
networks are typically used. Despite their success to identify important
regions on classification tasks, these saliency regions only focus on the most
discriminant areas of an image, limiting their use in semantic segmentation. In
this work, we propose a manifold driven attention-based network to enhance
visual salient regions, thereby improving segmentation accuracy in a weakly
supervised setting. Our method generates superior attention maps directly
during inference without the need of extra computations. We evaluate the
benefits of our approach in the task of segmentation using a public benchmark
on skin lesion images. Results demonstrate that our method outperforms the
state-of-the-art GradCAM by a margin of ~22% in terms of Dice score.
Related papers
- Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation.
In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation.
arXiv Detail & Related papers (2024-03-04T10:18:38Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely diagnosis and accurate treatment.
Deep learning techniques have emerged as the leading approach for medical image analysis and processing.
We introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels.
arXiv Detail & Related papers (2023-04-11T00:17:34Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
We propose a contrast-based variational model to generate segmentation results for histopathology images.
The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner.
It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled novel' regions.
arXiv Detail & Related papers (2023-04-07T10:12:21Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
This paper offers a comprehensive review on label-efficient segmentation methods.
We first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels.
Next, we summarize the existing label-efficient segmentation methods from a unified perspective.
arXiv Detail & Related papers (2022-07-04T06:21:01Z) - Learning Whole-Slide Segmentation from Inexact and Incomplete Labels
using Tissue Graphs [11.315178576537768]
We propose SegGini, a weakly supervised semantic segmentation method using graphs.
SegGini segment arbitrary and large images, scaling from tissue microarray (TMA) to whole slide image (WSI)
arXiv Detail & Related papers (2021-03-04T16:04:24Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
We propose a simple yet effective approach to enforce the network to pay attention to other parts of an object.
Specifically, we perform clustering on image features to generate pseudo sub-categories labels within each annotated parent class.
We conduct extensive analysis to validate the proposed method and show that our approach performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-03T20:48:31Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.