Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model
- URL: http://arxiv.org/abs/2304.03572v1
- Date: Fri, 7 Apr 2023 10:12:21 GMT
- Title: Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model
- Authors: Hongrun Zhang, Liam Burrows, Yanda Meng, Declan Sculthorpe, Abhik
Mukherjee, Sarah E Coupland, Ke Chen, Yalin Zheng
- Abstract summary: We propose a contrast-based variational model to generate segmentation results for histopathology images.
The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner.
It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled novel' regions.
- Score: 7.021021047695508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation is a fundamental task in the field of imaging and vision.
Supervised deep learning for segmentation has achieved unparalleled success
when sufficient training data with annotated labels are available. However,
annotation is known to be expensive to obtain, especially for histopathology
images where the target regions are usually with high morphology variations and
irregular shapes. Thus, weakly supervised learning with sparse annotations of
points is promising to reduce the annotation workload. In this work, we propose
a contrast-based variational model to generate segmentation results, which
serve as reliable complementary supervision to train a deep segmentation model
for histopathology images. The proposed method considers the common
characteristics of target regions in histopathology images and can be trained
in an end-to-end manner. It can generate more regionally consistent and
smoother boundary segmentation, and is more robust to unlabeled `novel'
regions. Experiments on two different histology datasets demonstrate its
effectiveness and efficiency in comparison to previous models.
Related papers
- CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
Tumor region segmentation is an essential task for the quantitative analysis of digital pathology.
Recent deep neural networks have shown state-of-the-art performance in various image-segmentation tasks.
We propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions.
arXiv Detail & Related papers (2023-07-03T13:45:24Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
Deep learning has produced encouraging results for kidney stone classification using endoscope images.
The shortage of annotated training data poses a severe problem in improving the performance and generalization ability of the trained model.
We propose SegPrompt to alleviate the data shortage problems by exploiting segmentation maps from two aspects.
arXiv Detail & Related papers (2023-03-15T01:30:48Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels.
We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions.
The resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments.
arXiv Detail & Related papers (2021-10-01T13:47:07Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z) - Manifold-driven Attention Maps for Weakly Supervised Segmentation [9.289524646688244]
We propose a manifold driven attention-based network to enhance visual salient regions.
Our method generates superior attention maps directly during inference without the need of extra computations.
arXiv Detail & Related papers (2020-04-07T00:03:28Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.