Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning
- URL: http://arxiv.org/abs/2304.04902v2
- Date: Tue, 29 Aug 2023 13:42:27 GMT
- Title: Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning
- Authors: Amirhossein Rasoulian, Soorena Salari, Yiming Xiao
- Abstract summary: Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely diagnosis and accurate treatment.
Deep learning techniques have emerged as the leading approach for medical image analysis and processing.
We introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels.
- Score: 0.6269243524465492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intracranial hemorrhage (ICH) is a life-threatening medical emergency that
requires timely and accurate diagnosis for effective treatment and improved
patient survival rates. While deep learning techniques have emerged as the
leading approach for medical image analysis and processing, the most commonly
employed supervised learning often requires large, high-quality annotated
datasets that can be costly to obtain, particularly for pixel/voxel-wise image
segmentation. To address this challenge and facilitate ICH treatment decisions,
we introduce a novel weakly supervised method for ICH segmentation, utilizing a
Swin transformer trained on an ICH classification task with categorical labels.
Our approach leverages a hierarchical combination of head-wise gradient-infused
self-attention maps to generate accurate image segmentation. Additionally, we
conducted an exploratory study on different learning strategies and showed that
binary ICH classification has a more positive impact on self-attention maps
compared to full ICH subtyping. With a mean Dice score of 0.44, our technique
achieved similar ICH segmentation performance as the popular U-Net and
Swin-UNETR models with full supervision and outperformed a similar weakly
supervised approach using GradCAM, demonstrating the excellent potential of the
proposed framework in challenging medical image segmentation tasks. Our code is
available at https://github.com/HealthX-Lab/HGI-SAM.
Related papers
- Mind the Context: Attention-Guided Weak-to-Strong Consistency for Enhanced Semi-Supervised Medical Image Segmentation [14.67636369741001]
This paper introduces a semi-supervised learning framework named Attention-Guided weak-to-strong Consistency Match (AIGCMatch)
The AIGCMatch framework incorporates attention-guided perturbation strategies at both the image and feature levels to achieve weak-to-strong consistency regularization.
Our method achieved a 90.4% Dice score in the 7-case scenario on the ACDC dataset, surpassing the state-of-the-art methods and demonstrating its potential and efficacy in clinical settings.
arXiv Detail & Related papers (2024-10-16T10:04:22Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Class Activation Map-based Weakly supervised Hemorrhage Segmentation
using Resnet-LSTM in Non-Contrast Computed Tomography images [0.06269281581001895]
Intracranial hemorrhages (ICH) are routinely diagnosed using non-contrast CT (NCCT) for severity assessment.
Deep learning (DL)-based methods have shown great potential, however, training them requires a huge amount of manually annotated lesion-level labels.
We propose a novel weakly supervised DL method for ICH segmentation on NCCT scans, using image-level binary classification labels.
arXiv Detail & Related papers (2023-09-28T17:32:19Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
We propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation.
Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss.
arXiv Detail & Related papers (2023-04-06T22:43:13Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.