論文の概要: Specific Single- and Multi-Objective Evolutionary Algorithms for the
Chance-Constrained Knapsack Problem
- arxiv url: http://arxiv.org/abs/2004.03205v2
- Date: Wed, 8 Apr 2020 03:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 23:23:39.051492
- Title: Specific Single- and Multi-Objective Evolutionary Algorithms for the
Chance-Constrained Knapsack Problem
- Title(参考訳): Chance-Constrained Knapsack問題に対する特異な単目的および多目的進化アルゴリズム
- Authors: Yue Xie, Aneta Neumann, Frank Neumann
- Abstract要約: 我々は、チャンス制約付きknapsack問題に対して、新しい効果的な多目的モデルを提案する。
実験結果から, 進化的多目的アルゴリズムを用いた場合, 性能が大幅に向上することが示唆された。
- 参考スコア(独自算出の注目度): 14.352521012951865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The chance-constrained knapsack problem is a variant of the classical
knapsack problem where each item has a weight distribution instead of a
deterministic weight. The objective is to maximize the total profit of the
selected items under the condition that the weight of the selected items only
exceeds the given weight bound with a small probability of $\alpha$. In this
paper, consider problem-specific single-objective and multi-objective
approaches for the problem. We examine the use of heavy-tail mutations and
introduce a problem-specific crossover operator to deal with the
chance-constrained knapsack problem. Empirical results for single-objective
evolutionary algorithms show the effectiveness of our operators compared to the
use of classical operators. Moreover, we introduce a new effective
multi-objective model for the chance-constrained knapsack problem. We use this
model in combination with the problem-specific crossover operator in
multi-objective evolutionary algorithms to solve the problem. Our experimental
results show that this leads to significant performance improvements when using
the approach in evolutionary multi-objective algorithms such as GSEMO and
NSGA-II.
- Abstract(参考訳): チャンス制約knapsack問題は、各項目が決定論的重みではなく重み分布を持つ古典的なknapsack問題の変種である。
目的は、選択された項目の重量が与えられた重量をわずかに$\alpha$の確率で超えるという条件の下で、選択された項目の総利益を最大化することである。
本稿では,問題固有の単一目的と多目的のアプローチについて考察する。
そこで本研究では,ヘビーテール変異の使用について検討し,チャンス拘束型クナプサック問題に対処する問題特異的クロスオーバー演算子を提案する。
単目的進化アルゴリズムの実証結果は、古典演算子と比較して演算子の有効性を示す。
さらに,チャンス制約付きknapsack問題に対する効果的な多目的モデルを提案する。
このモデルを,多目的進化アルゴリズムにおける問題固有のクロスオーバー演算子と組み合わせて解く。
実験の結果,GSEMOやNSGA-IIといった進化的多目的アルゴリズムのアプローチを用いることで,性能が大幅に向上することが示された。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Addressing The Knapsack Challenge Through Cultural Algorithm
Optimization [0.0]
我々は,0-1knapsack問題の解法に特化して設計された,新しい文化アルゴリズムの変種を紹介する。
提案アルゴリズムは,集団を改良するための信念空間と,交叉率と突然変異率を動的に調節する2つの重要な機能を導入している。
我々は,このアルゴリズムがグローバルな最適点を一貫して見つけ出す上で,顕著な効率性を示す証拠を提供する。
論文 参考訳(メタデータ) (2023-10-30T17:05:19Z) - Evolutionary Multi-Objective Algorithms for the Knapsack Problems with
Stochastic Profits [13.026567958569965]
我々は、ある商品の利益に対する一定の信頼を保証するため、利益を伴うknapsack問題のバージョンを検討する。
利益率制約付きクナップサック問題の多目的定式化を導入し, 両目的性評価法を3つ設計する。
両設定のベンチマークにおいて,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2023-03-03T03:28:51Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
癌に対する化学療法治療は、多数の相互作用する変数と制約を持つ複雑な最適化問題である。
より洗練されたアルゴリズムは、このような複雑な問題に対してより良いパフォーマンスをもたらすことが示される。
我々は、この問題における多数の相互作用によって、より洗練されたアルゴリズムが妨げられていることが原因であると仮定する。
論文 参考訳(メタデータ) (2022-05-17T15:28:46Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - Generalization in portfolio-based algorithm selection [97.74604695303285]
ポートフォリオベースのアルゴリズム選択に関する最初の証明可能な保証を提供する。
ポートフォリオが大きければ、非常に単純なアルゴリズムセレクタであっても、過剰適合は避けられないことを示す。
論文 参考訳(メタデータ) (2020-12-24T16:33:17Z) - Single- and Multi-Objective Evolutionary Algorithms for the Knapsack
Problem with Dynamically Changing Constraints [13.896724650508087]
古典的knapsack問題に対する単目的・多目的ベースライン進化アルゴリズムについて検討する。
この結果から, 動的変化を考慮に入れた集団を用いた多目的アプローチは, 多くのベンチマークシナリオにおいて明らかな優位性を有することが示された。
論文 参考訳(メタデータ) (2020-04-27T03:50:24Z) - Evolutionary Bi-objective Optimization for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives [12.634782111072585]
本稿では,各項目の重みが容量制約の対象となる動的チャンス制約knapsack問題について考察する。
目的は、総重量がキャパシティを超える確率に基づく総利益を最大化することである。
与えられた解に対する最小限のキャパシティを見積もる追加の目的を導入する。
論文 参考訳(メタデータ) (2020-02-17T04:36:15Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。