論文の概要: Hierarchical Opacity Propagation for Image Matting
- arxiv url: http://arxiv.org/abs/2004.03249v1
- Date: Tue, 7 Apr 2020 10:39:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 00:15:05.227700
- Title: Hierarchical Opacity Propagation for Image Matting
- Title(参考訳): 画像マッチングのための階層的Opacity Propagation
- Authors: Yaoyi Li, Qingyao Xu, Hongtao Lu
- Abstract要約: ピクセル間のより直接的アルファマット伝播のための新しい構造が要求されている。
HOPマッティングは最先端のマッティング法より優れている。
- 参考スコア(独自算出の注目度): 15.265494938937737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural image matting is a fundamental problem in computational photography
and computer vision. Deep neural networks have seen the surge of successful
methods in natural image matting in recent years. In contrast to traditional
propagation-based matting methods, some top-tier deep image matting approaches
tend to perform propagation in the neural network implicitly. A novel structure
for more direct alpha matte propagation between pixels is in demand. To this
end, this paper presents a hierarchical opacity propagation (HOP) matting
method, where the opacity information is propagated in the neighborhood of each
point at different semantic levels. The hierarchical structure is based on one
global and multiple local propagation blocks. With the HOP structure, every
feature point pair in high-resolution feature maps will be connected based on
the appearance of input image. We further propose a scale-insensitive
positional encoding tailored for image matting to deal with the unfixed size of
input image and introduce the random interpolation augmentation into image
matting. Extensive experiments and ablation study show that HOP matting is
capable of outperforming state-of-the-art matting methods.
- Abstract(参考訳): 自然画像マッチングは、計算写真とコンピュータビジョンの基本的な問題である。
近年、ディープニューラルネットワークは自然画像のマッチングで成功した手法が急増している。
従来の伝搬ベースのマッチング手法とは対照的に、最上位の深層画像マッチングアプローチでは、ニューラルネットワークで暗黙的に伝搬を行う傾向がある。
画素間のより直接的なアルファマット伝播のための新しい構造が要求されている。
そこで本稿では,異なる意味レベルにおいて各点近傍に不透明情報が伝播する階層的不透明性伝播(hop)マットング法を提案する。
階層構造は1つの大域的および複数の局所的伝播ブロックに基づいている。
ホップ構造では、高解像度特徴マップの全ての特徴点ペアは、入力画像の出現に基づいて接続される。
さらに,入力画像の未固定サイズに対処するために,画像マッティング用に調整されたスケール非感受性位置符号化を提案し,画像マッティングにランダム補間拡張を導入する。
広汎な実験とアブレーション研究により、HOPマッティングは最先端のマッティング法より優れていることが示された。
関連論文リスト
- Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
生成した画像と実世界の画像の間にはドメインギャップがあり、これは実世界の画像の高品質なバリエーションを生成する上での課題である。
実世界画像のアライメントによる変化(RIVAL)と呼ばれる新しい推論パイプラインを提案する。
我々のパイプラインは、画像生成プロセスとソース画像の反転チェーンを整列させることにより、画像の変動の生成品質を向上させる。
論文 参考訳(メタデータ) (2023-05-30T04:09:47Z) - Deep Image Matting: A Comprehensive Survey [85.77905619102802]
本稿では,ディープラーニング時代における画像マッチングの最近の進歩を概観する。
本稿では,補助的な入力ベースの画像マッチングと,自動的な画像マッチングという,2つの基本的なサブタスクに焦点を当てる。
画像マッチングの関連応用について論じ,今後の研究への課題と可能性を明らかにする。
論文 参考訳(メタデータ) (2023-04-10T15:48:55Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Long-Range Feature Propagating for Natural Image Matting [93.20589403997505]
自然画像マッチングは、トリマップ内の未知領域のアルファ値を推定する。
近年、深層学習に基づく手法は、その類似性に応じて、既知の領域から未知領域へのアルファ値の伝播を行っている。
本稿では,Alpha matte 推定のために受信フィールド外における長距離コンテキスト特徴を学習する Long-Range Feature Propagating Network (LFPNet) を提案する。
論文 参考訳(メタデータ) (2021-09-25T01:17:17Z) - Prior-Induced Information Alignment for Image Matting [28.90998570043986]
我々は、PIIAMatting(Presideed-induced Information Alignment Matting Network)という新しいネットワークを提案する。
ピクセルワイズ対応マップの区別と層ワイズ特徴マップの相関を効率的にモデル化することができる。
PIIAMattingはAlphamatting.com, composition-1K, Distinctions-646データセットの最先端の画像マッチング手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2021-06-28T07:46:59Z) - Image Inpainting with Edge-guided Learnable Bidirectional Attention Maps [85.67745220834718]
不規則な穴の画像インペインティングを改善するためのエッジガイド学習可能な双方向注意マップ(Edge-LBAM)を紹介します。
当社のEdge-LBAMメソッドには、予測エッジによる構造認識マスク更新を含むデュアルプロシージャが含まれています。
広範な実験により,エッジlbamはコヒーレントな画像構造を生成し,色差やぼやけを防止できることがわかった。
論文 参考訳(メタデータ) (2021-04-25T07:25:16Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
画像マッチングにおける意味論と細部の役割について検討する。
本稿では,共有エンコーダと2つの分離デコーダを用いた新しいGlance and Focus Matting Network(GFM)を提案する。
総合的な実証研究により、GFMは最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2020-10-30T10:57:13Z) - High-Resolution Deep Image Matting [39.72708676319803]
HDMattは、高解像度入力のための最初のディープラーニングベースの画像マッチングアプローチである。
提案手法は,Adobe Image Matting と AlphaMatting のベンチマーク上で,最先端の性能を新たに設定する。
論文 参考訳(メタデータ) (2020-09-14T17:53:15Z) - Deformable spatial propagation network for depth completion [2.5306673456895306]
本稿では,各画素に対して異なる受容場と親和性行列を適応的に生成する変形可能な空間伝搬ネットワーク(DSPN)を提案する。
これにより、ネットワークは伝播のためのより少ないがより関連性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2020-07-08T16:39:50Z) - Natural Image Matting via Guided Contextual Attention [18.034160025888056]
本研究は,自然画像マッチングのための新しいエンド・ツー・エンド・アプローチを,ガイド付きコンテキストアテンションモジュールで開発する。
提案手法は親和性に基づく手法の情報フローを模倣し,深層ニューラルネットワークで学習した豊富な特徴を同時に利用することができる。
composition-1k test set と alphamatting.com ベンチマークデータセットの実験結果から,本手法は自然な画像マッチングにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-01-13T05:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。