論文の概要: High-Resolution Deep Image Matting
- arxiv url: http://arxiv.org/abs/2009.06613v2
- Date: Fri, 15 Jan 2021 08:14:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 12:43:07.296356
- Title: High-Resolution Deep Image Matting
- Title(参考訳): 高分解能深部イメージマッティング
- Authors: Haichao Yu, Ning Xu, Zilong Huang, Yuqian Zhou, Humphrey Shi
- Abstract要約: HDMattは、高解像度入力のための最初のディープラーニングベースの画像マッチングアプローチである。
提案手法は,Adobe Image Matting と AlphaMatting のベンチマーク上で,最先端の性能を新たに設定する。
- 参考スコア(独自算出の注目度): 39.72708676319803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image matting is a key technique for image and video editing and composition.
Conventionally, deep learning approaches take the whole input image and an
associated trimap to infer the alpha matte using convolutional neural networks.
Such approaches set state-of-the-arts in image matting; however, they may fail
in real-world matting applications due to hardware limitations, since
real-world input images for matting are mostly of very high resolution. In this
paper, we propose HDMatt, a first deep learning based image matting approach
for high-resolution inputs. More concretely, HDMatt runs matting in a
patch-based crop-and-stitch manner for high-resolution inputs with a novel
module design to address the contextual dependency and consistency issues
between different patches. Compared with vanilla patch-based inference which
computes each patch independently, we explicitly model the cross-patch
contextual dependency with a newly-proposed Cross-Patch Contextual module (CPC)
guided by the given trimap. Extensive experiments demonstrate the effectiveness
of the proposed method and its necessity for high-resolution inputs. Our HDMatt
approach also sets new state-of-the-art performance on Adobe Image Matting and
AlphaMatting benchmarks and produce impressive visual results on more
real-world high-resolution images.
- Abstract(参考訳): イメージマッティングは、画像とビデオの編集と合成のための重要な技術である。
従来、ディープラーニングアプローチは入力画像全体と関連するトリマップを使って畳み込みニューラルネットワークを用いてアルファマットを推論する。
このようなアプローチは、画像マッチングにおける最先端を規定するが、ハードウェアの制約により、実世界のマッチングアプリケーションでは失敗する可能性がある。
本稿では,HDMattを提案する。HDMattは,高分解能入力のための第1の深層学習に基づく画像マッチング手法である。
より具体的には、HDMattはパッチベースのクロップ・アンド・スティッチな方法で、異なるパッチ間のコンテキスト依存性と一貫性の問題に対処する新しいモジュール設計で高解像度の入力を実行する。
それぞれのパッチを個別に計算するバニラパッチベースの推論と比較して,新たに提案したクロスパッチコンテキストモジュール(CPC)を用いて,クロスパッチのコンテキスト依存性を明示的にモデル化する。
広範な実験により,提案手法の有効性と高分解能入力の必要性が実証された。
私たちのhdmattアプローチは、adobe image mattingとalphamattingベンチマークで新たな最先端のパフォーマンスを設定し、より現実世界の高解像度画像で印象的なビジュアル結果を生成します。
関連論文リスト
- DiffusionMat: Alpha Matting as Sequential Refinement Learning [87.76572845943929]
DiffusionMatは、粗いアルファマットから洗練されたアルファマットへの移行に拡散モデルを利用する画像マッチングフレームワークである。
補正モジュールは、各復調ステップで出力を調整し、最終的な結果が入力画像の構造と一致していることを保証する。
その結果,DiffusionMatは既存の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-11-22T17:16:44Z) - DBAT: Dynamic Backward Attention Transformer for Material Segmentation
with Cross-Resolution Patches [8.812837829361923]
クロスレゾリューション特徴を集約する動的後方アテンション変換器(DBAT)を提案する。
実験の結果,DBATの精度は86.85%であり,最先端のリアルタイムモデルの中では最高の性能であることがわかった。
さらに,提案モデルが他の手法よりも優れた材料関連特徴を抽出できることを示すため,セマンティックなラベルにアライメントし,ネットワーク分割を行う。
論文 参考訳(メタデータ) (2023-05-06T03:47:20Z) - Deep Image Matting: A Comprehensive Survey [85.77905619102802]
本稿では,ディープラーニング時代における画像マッチングの最近の進歩を概観する。
本稿では,補助的な入力ベースの画像マッチングと,自動的な画像マッチングという,2つの基本的なサブタスクに焦点を当てる。
画像マッチングの関連応用について論じ,今後の研究への課題と可能性を明らかにする。
論文 参考訳(メタデータ) (2023-04-10T15:48:55Z) - Smart Scribbles for Image Mating [90.18035889903909]
本稿では,ユーザが入力画像に数個のスクリブルを描画できるように,smart scribblesと呼ばれる対話型フレームワークを提案する。
異なるカテゴリを示すために、スクリブルを描画するための画像の最も情報性の高い領域を推測する。
その後、このクリブルを、よく設計された二相伝播によって画像の残りの部分に拡散させる。
論文 参考訳(メタデータ) (2021-03-31T13:30:49Z) - Semantic Layout Manipulation with High-Resolution Sparse Attention [106.59650698907953]
本稿では,意味ラベルマップを編集して入力画像を操作するセマンティックイメージレイアウト操作の課題に対処する。
このタスクの中核的な問題は、視覚的にイメージを現実的にしながら、入力画像から新しいセマンティックレイアウトに視覚的な詳細を転送する方法です。
512×512の解像度で視覚的詳細を新しいレイアウトに効果的に転送する高分解能スパースアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2020-12-14T06:50:43Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
画像マッチングにおける意味論と細部の役割について検討する。
本稿では,共有エンコーダと2つの分離デコーダを用いた新しいGlance and Focus Matting Network(GFM)を提案する。
総合的な実証研究により、GFMは最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2020-10-30T10:57:13Z) - Hierarchical Opacity Propagation for Image Matting [15.265494938937737]
ピクセル間のより直接的アルファマット伝播のための新しい構造が要求されている。
HOPマッティングは最先端のマッティング法より優れている。
論文 参考訳(メタデータ) (2020-04-07T10:39:55Z) - Natural Image Matting via Guided Contextual Attention [18.034160025888056]
本研究は,自然画像マッチングのための新しいエンド・ツー・エンド・アプローチを,ガイド付きコンテキストアテンションモジュールで開発する。
提案手法は親和性に基づく手法の情報フローを模倣し,深層ニューラルネットワークで学習した豊富な特徴を同時に利用することができる。
composition-1k test set と alphamatting.com ベンチマークデータセットの実験結果から,本手法は自然な画像マッチングにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-01-13T05:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。