Multi-Domain Dialogue State Tracking based on State Graph
- URL: http://arxiv.org/abs/2010.11137v1
- Date: Wed, 21 Oct 2020 16:55:18 GMT
- Title: Multi-Domain Dialogue State Tracking based on State Graph
- Authors: Yan Zeng and Jian-Yun Nie
- Abstract summary: We investigate the problem of multi-domain Dialogue State Tracking (DST) with open vocabulary.
Existing approaches usually previous dialogue state with dialogue history as the input to a bi-directional Transformer encoder.
We propose to construct a dialogue state graph in which domains, slots and values from the previous dialogue state are connected properly.
- Score: 23.828348485513043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of multi-domain Dialogue State Tracking (DST) with
open vocabulary, which aims to extract the state from the dialogue. Existing
approaches usually concatenate previous dialogue state with dialogue history as
the input to a bi-directional Transformer encoder. They rely on the
self-attention mechanism of Transformer to connect tokens in them. However,
attention may be paid to spurious connections, leading to wrong inference. In
this paper, we propose to construct a dialogue state graph in which domains,
slots and values from the previous dialogue state are connected properly.
Through training, the graph node and edge embeddings can encode co-occurrence
relations between domain-domain, slot-slot and domain-slot, reflecting the
strong transition paths in general dialogue. The state graph, encoded with
relational-GCN, is fused into the Transformer encoder. Experimental results
show that our approach achieves a new state of the art on the task while
remaining efficient. It outperforms existing open-vocabulary DST approaches.
Related papers
- CTRLStruct: Dialogue Structure Learning for Open-Domain Response
Generation [38.60073402817218]
Well-structured topic flow can leverage background information and predict future topics to help generate controllable and explainable responses.
We present a new framework for dialogue structure learning to effectively explore topic-level dialogue clusters as well as their transitions with unlabelled information.
Experiments on two popular open-domain dialogue datasets show our model can generate more coherent responses compared to some excellent dialogue models.
arXiv Detail & Related papers (2023-03-02T09:27:11Z) - Multimodal Dialogue State Tracking [97.25466640240619]
Video-Dialogue Transformer Network (VDTN) learns contextual dependencies between videos and dialogues to generate multimodal dialogue states.
VDTN combines both object-level features and segment-level features and learns contextual dependencies between videos and dialogues to generate multimodal dialogue states.
arXiv Detail & Related papers (2022-06-16T03:18:42Z) - Structure Extraction in Task-Oriented Dialogues with Slot Clustering [94.27806592467537]
In task-oriented dialogues, dialogue structure has often been considered as transition graphs among dialogue states.
We propose a simple yet effective approach for structure extraction in task-oriented dialogues.
arXiv Detail & Related papers (2022-02-28T20:18:12Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
We conduct unsupervised discovery of dialog structure from chitchat corpora.
We then leverage it to facilitate dialog generation in downstream systems.
We present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure.
arXiv Detail & Related papers (2020-12-31T10:58:37Z) - Multi-turn Response Selection using Dialogue Dependency Relations [39.99448321736736]
Multi-turn response selection is a task designed for developing dialogue agents.
We propose a dialogue extraction algorithm to transform a dialogue history into threads based on their dependency relations.
Our model outperforms the state-of-the-art baselines on both D7 and DSTC8*, with competitive results on Ubuntu.
arXiv Detail & Related papers (2020-10-04T08:00:19Z) - CREDIT: Coarse-to-Fine Sequence Generation for Dialogue State Tracking [44.38388988238695]
A dialogue state tracker aims to accurately find a compact representation of the current dialogue status.
We employ a structured state representation and cast dialogue state tracking as a sequence generation problem.
Experiments demonstrate our tracker achieves encouraging joint goal accuracy for the five domains in MultiWOZ 2.0 and MultiWOZ 2.1 datasets.
arXiv Detail & Related papers (2020-09-22T10:27:18Z) - Dialogue Relation Extraction with Document-level Heterogeneous Graph
Attention Networks [21.409522845011907]
Dialogue relation extraction (DRE) aims to detect the relation between two entities mentioned in a multi-party dialogue.
We present a graph attention network-based method for DRE where a graph contains meaningfully connected speaker, entity, entity-type, and utterance nodes.
We empirically show that this graph-based approach quite effectively captures the relations between different entity pairs in a dialogue as it outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-10T18:51:48Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue
State Tracking [32.36259992245]
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation.
For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths.
We utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST.
arXiv Detail & Related papers (2020-04-07T13:46:39Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.