論文の概要: Nonparametric Data Analysis on the Space of Perceived Colors
- arxiv url: http://arxiv.org/abs/2004.03402v1
- Date: Sun, 5 Apr 2020 17:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 13:11:36.634231
- Title: Nonparametric Data Analysis on the Space of Perceived Colors
- Title(参考訳): 知覚色空間の非パラメトリックデータ解析
- Authors: Vic Patrangenaru and Yifang Deng
- Abstract要約: 本稿では、Resnikoff 3D同質空間モデル上でランダムな物体と見なされる知覚色について述べる。
機械ビジョンにおける色分化の2つの応用を統計的手法として提案した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Moving around in a 3D world, requires the visual system of a living
individual to rely on three channels of image recognition, which is done
through three types of retinal cones. Newton, Grasmann, Helmholz and
Schr$\ddot{o}$dinger laid down the basic assumptions needed to understand
colored vision. Such concepts were furthered by Resnikoff, who imagined the
space of perceived colors as a 3D homogeneous space.
This article is concerned with perceived colors regarded as random objects on
a Resnikoff 3D homogeneous space model. Two applications to color
differentiation in machine vision are illustrated for the proposed statistical
methodology, applied to the Euclidean model for perceived colors.
- Abstract(参考訳): 3dの世界を動き回るためには、3種類の網膜円錐を通して行われる3つの画像認識チャネルに依存する生活者の視覚システムが必要である。
Newton, Grasmann, Helmholz, Schr$\ddot{o}$dingerは、色のついた視覚を理解するために必要な基本的な仮定を説明した。
このような概念は、知覚される色の空間を3次元同質空間として想像したResnikoffによってもたらされた。
この記事では、resnikoff 3d 等質空間モデル上のランダムな対象と見なされる色について述べる。
機械視覚における色分化の2つの応用を, 知覚色に対するユークリッドモデルに適用した統計的手法に適用した。
関連論文リスト
- A Computational Framework for Modeling Emergence of Color Vision in the Human Brain [9.10623460958915]
脳がどのようにして色覚を受信した視神経信号から純粋にデコードするかは謎である。
眼と大脳皮質の両方をシミュレートすることで、人間の色覚の出現をモデル化するための計算フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-29T21:27:06Z) - SpecGaussian with Latent Features: A High-quality Modeling of the View-dependent Appearance for 3D Gaussian Splatting [11.978842116007563]
Lantent-SpecGSは、各3Dガウス内の普遍的な潜在神経記述子を利用するアプローチである。
2つの並列CNNは、分割された特徴マップを拡散色と特異色に分離してデコーダとして設計されている。
視点に依存するマスクが学習され、これらの2色をマージし、最終的なレンダリング画像が生成される。
論文 参考訳(メタデータ) (2024-08-23T15:25:08Z) - Computational Trichromacy Reconstruction: Empowering the Color-Vision Deficient to Recognize Colors Using Augmented Reality [12.77228283953913]
色覚障害(CVD)患者が色を認識・識別する支援技術を提案する。
ディクロマトリクスの色知覚は、通常のトリクロマトリクスの3次元色(3D)知覚の2次元部分集合の縮小である。
提案システムを用いて、CVD個人は、計算色空間変換により、異なる色に異なる変化を誘発することができる。
論文 参考訳(メタデータ) (2024-08-04T01:34:22Z) - THOR2: Leveraging Topological Soft Clustering of Color Space for Human-Inspired Object Recognition in Unseen Environments [1.9950682531209158]
本研究では,RGB-D画像から生成された点群に対する3次元形状と色に基づく記述子TOPS2と,それに付随する認識フレームワークTHOR2を提案する。
TOPS2ディスクリプタは、TOPSディスクリプタから3D形状のスライシングに基づくトポロジカル表現を保持することにより、人間の認知機構であるオブジェクト単位を具現化する。
合成データを用いてトレーニングされたTHOR2は、3D形状をベースとしたTHORに比べて認識精度が著しく向上した。
論文 参考訳(メタデータ) (2024-08-02T21:24:14Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
人間は、単一のクエリ参照イメージペアのみを与えられたラベル/トレーニングなしで、目に見えないオブジェクトの相対的なポーズを容易に推論することができる。
そこで,本研究では,RGB-D参照から2.5D形状のRGB-D参照,オフザシェルフ微分可能なRGB-D参照,DINOv2のような事前学習モデルからのセマンティックキューを用いた3D一般化可能な相対ポーズ推定手法を提案する。
論文 参考訳(メタデータ) (2024-06-26T16:01:10Z) - Colorizing Monochromatic Radiance Fields [55.695149357101755]
単色放射光場からの再現色を,ラボ色空間における表現・予測課題として検討する。
まず、単色画像を用いて輝度と密度の表現を構築することにより、画像色化モジュールに基づいて色表現を再現できる。
次に、輝度、密度、色を表現することで、カラフルな暗黙のモデルを再現する。
論文 参考訳(メタデータ) (2024-02-19T14:47:23Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
本研究では,3Dアノテーションを使わずにセマンティックなシーン再構成を行う中心的な3Dシーンモデリングタスクについて検討する。
提案手法の鍵となる考え方は,不完全な3次元再構成と対応するRGB-D画像の両方を用いたトレーニング可能なモデルの設計である。
本研究では,2つの大規模ベンチマークデータセットであるMatterPort3DとScanNetに対して,セマンティックシーン補完の最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T17:47:52Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - Category-Level 3D Non-Rigid Registration from Single-View RGB Images [28.874008960264202]
CNNを用いたRGB画像からの3次元非剛性登録問題の解法を提案する。
我々の目的は、与えられた3次元標準模型を1枚のRGB画像で観察された新しいインスタンスに整合する変形場を見つけることである。
論文 参考訳(メタデータ) (2020-08-17T10:35:19Z) - Appearance Consensus Driven Self-Supervised Human Mesh Recovery [67.20942777949793]
単眼画像から人間のポーズや形状を推定する自己教師付きメッシュ回復フレームワークを提案する。
標準モデルに基づく3次元ポーズ推定ベンチマークの最先端結果を得る。
その結果、色付きメッシュ予測により、ポーズや形状推定以外にも、さまざまな外観関連タスクにフレームワークの使用が開放される。
論文 参考訳(メタデータ) (2020-08-04T05:40:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。