Neural Analogical Matching
- URL: http://arxiv.org/abs/2004.03573v5
- Date: Tue, 15 Dec 2020 16:59:33 GMT
- Title: Neural Analogical Matching
- Authors: Maxwell Crouse, Constantine Nakos, Ibrahim Abdelaziz, Kenneth Forbus
- Abstract summary: The importance of analogy to humans has made it an active area of research in the broader field of artificial intelligence.
We introduce the Analogical Matching Network, a neural architecture that learns to produce analogies between structured, symbolic representations.
- Score: 8.716086137563243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analogy is core to human cognition. It allows us to solve problems based on
prior experience, it governs the way we conceptualize new information, and it
even influences our visual perception. The importance of analogy to humans has
made it an active area of research in the broader field of artificial
intelligence, resulting in data-efficient models that learn and reason in
human-like ways. While cognitive perspectives of analogy and deep learning have
generally been studied independently of one another, the integration of the two
lines of research is a promising step towards more robust and efficient
learning techniques. As part of a growing body of research on such an
integration, we introduce the Analogical Matching Network: a neural
architecture that learns to produce analogies between structured, symbolic
representations that are largely consistent with the principles of
Structure-Mapping Theory.
Related papers
- SoK: On Finding Common Ground in Loss Landscapes Using Deep Model Merging Techniques [4.013324399289249]
We present a novel taxonomy of model merging techniques organized by their core algorithmic principles.
We distill repeated empirical observations from the literature in these fields into characterizations of four major aspects of loss landscape geometry.
arXiv Detail & Related papers (2024-10-16T18:14:05Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Beneath Surface Similarity: Large Language Models Make Reasonable
Scientific Analogies after Structure Abduction [46.2032673640788]
The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures.
This work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies.
This paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems.
arXiv Detail & Related papers (2023-05-22T03:04:06Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Understanding Narratives through Dimensions of Analogy [17.68704739786042]
Analogical reasoning is a powerful tool that enables humans to connect two situations, and to generalize their knowledge from familiar to novel situations.
Modern scalable AI techniques with the potential to reason by analogy have been only applied to the special case of proportional analogy.
In this paper, we aim to bridge the gap by: 1) formalizing six dimensions of analogy based on mature insights from Cognitive Science research, 2) annotating a corpus of fables with each of these dimensions, and 3) defining four tasks with increasing complexity that enable scalable evaluation of AI techniques.
arXiv Detail & Related papers (2022-06-14T20:56:26Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
Deep learning continues to play as a powerful state-of-art technique that has achieved extraordinary accuracy levels in various domains of regression and classification tasks.
The original goal of proposing the neural network model is to improve the understanding of complex human brains using a mathematical expression approach.
Recent deep learning techniques continue to lose the interpretations of its functional process by being treated mostly as a black-box approximator.
arXiv Detail & Related papers (2022-03-24T21:40:04Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.