Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence
- URL: http://arxiv.org/abs/2412.00751v1
- Date: Sun, 01 Dec 2024 10:04:53 GMT
- Title: Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence
- Authors: Gordana Dodig-Crnkovic,
- Abstract summary: This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition.
We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains.
- Score: 1.14219428942199
- License:
- Abstract: This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition. Traditionally, cognition was believed to be exclusive to humans and a result of brain activity. However, recent studies reveal it as a fundamental characteristic of all life forms, ranging from single cells to complex multicellular organisms and their networks. Yet, the literature and general understanding of cognition still largely remain human-brain-focused, leading to conceptual gaps and incoherency. This paper presents a variety of computational (information processing) approaches, including an info-computational approach to cognition, where natural structures represent information and dynamical processes on natural structures are regarded as computation, relative to an observing cognizing agent. We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains. We examine recent findings linking morphological computation, morphogenesis, agency, basal cognition, extended evolutionary synthesis, and active inference. We establish a connection to Magnanis Eco-Cognitive Computationalism and the idea of computational domestication of ignorant entities. Novel theoretical and applied insights question the boundaries of conventional computational models of cognition. The traditional models prioritize symbolic processing and often neglect the inherent constraints and potentialities in the physical embodiment of agents on different levels of organization. Gaining a better info-computational grasp of cognitive embodiment is crucial for the advancement of fields such as biology, evolutionary studies, artificial intelligence, robotics, medicine, and more.
Related papers
- Exploring Cognition through Morphological Info-Computational Framework [1.14219428942199]
Information and computation are inseparably connected with cognition.
This chapter explores research connecting nature as a computational structure for a cognizer.
Understanding the embodiment of cognition through its morphological computational basis is crucial for biology, evolution, intelligence theory, AI, robotics, and other fields.
arXiv Detail & Related papers (2024-12-01T09:56:38Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Predictive Coding and Stochastic Resonance: Towards a Unified Theory of
Auditory (Phantom) Perception [6.416574036611064]
To gain a mechanistic understanding of brain function, hypothesis driven experiments should be accompanied by biologically plausible computational models.
With a special focus on tinnitus, we review recent work at the intersection of artificial intelligence, psychology, and neuroscience.
We conclude that two fundamental processing principles - being ubiquitous in the brain - best fit to a vast number of experimental results.
arXiv Detail & Related papers (2022-04-07T10:47:58Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - Natural Computational Architectures for Cognitive Info-Communication [3.3758186776249928]
Recent comprehensive overview of 40 years of research in cognitive architectures, (Kotseruba and Tsotsos 2020), evaluates modelling of the core cognitive abilities in humans, but only marginally addresses biologically plausible approaches based on natural computation.
We use evolutionary info-computational framework, where natural/ physical/ morphological computation leads to evolution of increasingly complex cognitive systems.
arXiv Detail & Related papers (2021-10-01T18:01:16Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.