Exploring Cognition through Morphological Info-Computational Framework
- URL: http://arxiv.org/abs/2412.00748v1
- Date: Sun, 01 Dec 2024 09:56:38 GMT
- Title: Exploring Cognition through Morphological Info-Computational Framework
- Authors: Gordana Dodig-Crnkovic,
- Abstract summary: Information and computation are inseparably connected with cognition.
This chapter explores research connecting nature as a computational structure for a cognizer.
Understanding the embodiment of cognition through its morphological computational basis is crucial for biology, evolution, intelligence theory, AI, robotics, and other fields.
- Score: 1.14219428942199
- License:
- Abstract: Traditionally, cognition has been considered a uniquely human capability involving perception, memory, learning, reasoning, and problem-solving. However, recent research shows that cognition is a fundamental ability shared by all living beings, from single cells to complex organisms. This chapter takes an info-computational approach (ICON), viewing natural structures as information and the processes of change in these structures as computations. It is a relational framework dependent on the perspective of a cognizing observer/cognizer. Informational structures are properties of the material substrate, and when focusing on the behavior of the substrate, we discuss morphological computing (MC). ICON and MC are complementary perspectives for a cognizer. Information and computation are inseparably connected with cognition. This chapter explores research connecting nature as a computational structure for a cognizer, with morphological computation, morphogenesis, agency, extended cognition, and extended evolutionary synthesis, using examples of the free energy principle and active inference. It introduces theoretical and practical approaches challenging traditional computational models of cognition limited to abstract symbol processing, highlighting the computational capacities inherent in the material substrate (embodiment). Understanding the embodiment of cognition through its morphological computational basis is crucial for biology, evolution, intelligence theory, AI, robotics, and other fields.
Related papers
- Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence [1.14219428942199]
This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition.
We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains.
arXiv Detail & Related papers (2024-12-01T10:04:53Z) - A Survey on Compositional Learning of AI Models: Theoretical and Experimental Practices [15.92779896185647]
Compositional learning is crucial for human cognition, especially in human language comprehension and visual perception.
Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies.
This paper surveys the literature on compositional learning of AI models and the connections made to cognitive studies.
arXiv Detail & Related papers (2024-06-13T03:46:21Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
We have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph.
We have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes.
The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning.
arXiv Detail & Related papers (2024-03-18T17:30:27Z) - Binding Dynamics in Rotating Features [72.80071820194273]
We propose an alternative "cosine binding" mechanism, which explicitly computes the alignment between features and adjusts weights accordingly.
This allows us to draw direct connections to self-attention and biological neural processes, and to shed light on the fundamental dynamics for object-centric representations to emerge in Rotating Features.
arXiv Detail & Related papers (2024-02-08T12:31:08Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Natural Computational Architectures for Cognitive Info-Communication [3.3758186776249928]
Recent comprehensive overview of 40 years of research in cognitive architectures, (Kotseruba and Tsotsos 2020), evaluates modelling of the core cognitive abilities in humans, but only marginally addresses biologically plausible approaches based on natural computation.
We use evolutionary info-computational framework, where natural/ physical/ morphological computation leads to evolution of increasingly complex cognitive systems.
arXiv Detail & Related papers (2021-10-01T18:01:16Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
Recent progress in artificial neural networks has shown that when large models are trained on enough linguistic data, grammatical structure emerges in their representations.
We extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses about how meanings should be composed.
Our work shows that neural networks are not only able to infer something about the structured relationships implicit in their training data, but can also deploy this knowledge to guide the composition of individual meanings into composite wholes.
arXiv Detail & Related papers (2021-05-19T07:24:42Z) - Neural Analogical Matching [8.716086137563243]
The importance of analogy to humans has made it an active area of research in the broader field of artificial intelligence.
We introduce the Analogical Matching Network, a neural architecture that learns to produce analogies between structured, symbolic representations.
arXiv Detail & Related papers (2020-04-07T17:50:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.