Constructing Clock-Transition-Based Two-Qubit Gates from Dimers of
Molecular Nanomagnets
- URL: http://arxiv.org/abs/2004.03635v2
- Date: Thu, 30 Jul 2020 23:15:42 GMT
- Title: Constructing Clock-Transition-Based Two-Qubit Gates from Dimers of
Molecular Nanomagnets
- Authors: Charles A. Collett, Paolo Santini, Stefano Carretta and Jonathan R.
Friedman
- Abstract summary: We present a scheme for using a heterodimer of two coupled molecular nanomagnets.
All of the gate operations needed to implement one- and two-qubit gates can be implemented with pulsed radio-frequency radiation.
- Score: 1.7587442088965228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A good qubit must have a coherence time long enough for gate operations to be
performed. Avoided level crossings allow for clock transitions in which
coherence is enhanced by the insensitivity of the transition to fluctuations in
external fields. Because of this insensitivity, it is not obvious how to
effectively couple qubits together while retaining clock-transition behavior.
Here we present a scheme for using a heterodimer of two coupled molecular
nanomagnets, each with a clock transition at zero magnetic field, in which all
of the gate operations needed to implement one- and two-qubit gates can be
implemented with pulsed radio-frequency radiation. We show that given realistic
coupling strengths between the nanomagnets in the dimer, good gate fidelities
($\sim$99.4\%) can be achieved. We identify the primary sources of error in
implementing gates and discuss how these may be mitigated, and investigate the
range of coherence times necessary for such a system to be a viable platform
for implementing quantum computing protocols.
Related papers
- High-fidelity $\sqrt{i\text{SWAP}}$ gates using a fixed coupler driven by two microwave pulses [12.986786945391236]
We propose a microwave-control protocol for the implementation of a two-qubit gate employing two transmon qubits coupled via a fixed-frequency transmon coupler.
We show that high-fidelity $sqrtitextSWAP$ gates can be achieved.
arXiv Detail & Related papers (2024-04-27T08:08:20Z) - Designing Fast Quantum Gates with Tunable Couplers: A Reinforcement
Learning Approach [0.0]
We propose and illustrate the usefulness of reinforcement learning to generate fast two-qubit gates in superconducting qubits.
We show that the RL controller offers great effectiveness in finding piecewise constant gate pulse sequences autonomously.
Such gate pulse sequences exploit the leakage space judiciously by controlling the leakage dynamics into and out of the computational subspace.
arXiv Detail & Related papers (2023-12-26T23:52:57Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - CNOT gates for fluxonium qubits via selective darkening of transitions [2.7080431315882967]
We analyze the cross-resonance effect for fluxonium circuits and investigate a two-qubit gate scheme based on selective darkening of a transition.
We show that gate error below $10-4$ is possible for realistic hardware parameters.
arXiv Detail & Related papers (2022-02-09T17:27:34Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.