Fast microwave-driven two-qubit gates between fluxonium qubits with a transmon coupler
- URL: http://arxiv.org/abs/2504.13718v2
- Date: Tue, 22 Apr 2025 16:45:49 GMT
- Title: Fast microwave-driven two-qubit gates between fluxonium qubits with a transmon coupler
- Authors: Siddharth Singh, Eugene Y. Huang, Jinlun Hu, Figen Yilmaz, Martijn F. S. Zwanenburg, Piranavan Kumaravadivel, Siyu Wang, Taryn V. Stefanski, Christian Kraglund Andersen,
- Abstract summary: Two qubit gates constitute fundamental building blocks in the realization of large-scale quantum devices.<n>We demonstrate a high-fidelity two-qubit gate between two fluxonium qubits enabled by an intermediate capacitively coupled transmon.<n>Our results show how carefully designed control pulses can speed up frequency selective entangling gates.
- Score: 4.118924312937903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two qubit gates constitute fundamental building blocks in the realization of large-scale quantum devices. Using superconducting circuits, two-qubit gates have previously been implemented in different ways with each method aiming to maximize gate fidelity. Another important goal of a new gate scheme is to minimize the complexity of gate calibration. In this work, we demonstrate a high-fidelity two-qubit gate between two fluxonium qubits enabled by an intermediate capacitively coupled transmon. The coupling strengths between the qubits and the coupler are designed to minimize residual crosstalk while still allowing for fast gate operations. The gate is based on frequency selectively exciting the coupler using a microwave drive to complete a 2$\pi$ rotation, conditional on the state of the fluxonium qubits. When successful, this drive scheme implements a conditional phase gate. Using analytically derived pulse shapes, we minimize unwanted excitations of the coupler and obtain gate errors of $10^{-2}$ for gate times below 60~ns. At longer durations, our gate is limited by relaxation of the coupler. Our results show how carefully designed control pulses can speed up frequency selective entangling gates.
Related papers
- Multi-Target Rydberg Gates via Spatial Blockade Engineering [47.582155477608445]
Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction.
We propose single-control-multi-target CZotimes N gates on a single-species neutral-atom platform.
We synthesise smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively.
arXiv Detail & Related papers (2025-04-21T17:59:56Z) - High-fidelity $\sqrt{i\text{SWAP}}$ gates using a fixed coupler driven by two microwave pulses [12.986786945391236]
We propose a microwave-control protocol for the implementation of a two-qubit gate employing two transmon qubits coupled via a fixed-frequency transmon coupler.
We show that high-fidelity $sqrtitextSWAP$ gates can be achieved.
arXiv Detail & Related papers (2024-04-27T08:08:20Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Implementing two-qubit gates at the quantum speed limit [33.51056531486263]
We experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed.
We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method.
We expect our method to offer significant speedups for non-native two-qubit gates.
arXiv Detail & Related papers (2022-06-15T18:00:00Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Parasitic-free gate: A protected switch between idle and entangled
states [0.8702432681310399]
We propose a gate to switch superconducting qubit pairs in and out of a two-body interaction.
It is imperative that this gate does not spread errors through the quantum register.
arXiv Detail & Related papers (2022-02-10T18:13:20Z) - CNOT gates for fluxonium qubits via selective darkening of transitions [2.7080431315882967]
We analyze the cross-resonance effect for fluxonium circuits and investigate a two-qubit gate scheme based on selective darkening of a transition.
We show that gate error below $10-4$ is possible for realistic hardware parameters.
arXiv Detail & Related papers (2022-02-09T17:27:34Z) - Proposal for entangling gates on fluxonium qubits via a two-photon
transition [0.0]
We propose a family of microwave-activated entangling gates on two capacitively coupled fluxonium qubits.
A microwave pulse applied to either qubit induces two-photon Rabi oscillations with a negligible leakage outside the computational subspace.
Our gate scheme is promising for large-scale quantum processors.
arXiv Detail & Related papers (2020-11-19T18:17:42Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.