Dense Residual Network for Retinal Vessel Segmentation
- URL: http://arxiv.org/abs/2004.03697v1
- Date: Tue, 7 Apr 2020 20:42:13 GMT
- Title: Dense Residual Network for Retinal Vessel Segmentation
- Authors: Changlu Guo, M\'arton Szemenyei, Yugen Yi, Ying Xue, Wei Zhou,
Yangyuan Li
- Abstract summary: We propose an efficient method to segment blood vessels in Scanning Laser Ophthalmoscopy retinal images.
Inspired by U-Net, "feature map reuse" and residual learning, we propose a deep dense residual network structure called DRNet.
Our method achieves the state-of-the-art performance even without data augmentation.
- Score: 8.778525346264466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal vessel segmentation plays an imaportant role in the field of retinal
image analysis because changes in retinal vascular structure can aid in the
diagnosis of diseases such as hypertension and diabetes. In recent research,
numerous successful segmentation methods for fundus images have been proposed.
But for other retinal imaging modalities, more research is needed to explore
vascular extraction. In this work, we propose an efficient method to segment
blood vessels in Scanning Laser Ophthalmoscopy (SLO) retinal images. Inspired
by U-Net, "feature map reuse" and residual learning, we propose a deep dense
residual network structure called DRNet. In DRNet, feature maps of previous
blocks are adaptively aggregated into subsequent layers as input, which not
only facilitates spatial reconstruction, but also learns more efficiently due
to more stable gradients. Furthermore, we introduce DropBlock to alleviate the
overfitting problem of the network. We train and test this model on the recent
SLO public dataset. The results show that our method achieves the
state-of-the-art performance even without data augmentation.
Related papers
- Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy.
We propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning.
Our approach results in greater segmentation accuracy than other approaches.
arXiv Detail & Related papers (2020-12-16T20:34:48Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Residual Spatial Attention Network for Retinal Vessel Segmentation [6.513112974264861]
We propose the Residual Spatial Attention Network (RSAN) for retinal vessel segmentation.
RSAN employs a modified residual block structure that integrates DropBlock.
In order to further improve the representation capability of the network, we introduce the spatial attention (SA) and propose the Residual Spatial Attention Block (RSAB)
arXiv Detail & Related papers (2020-09-18T13:17:13Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.