Gradient Reweighting: Towards Imbalanced Class-Incremental Learning
- URL: http://arxiv.org/abs/2402.18528v2
- Date: Fri, 29 Mar 2024 23:41:13 GMT
- Title: Gradient Reweighting: Towards Imbalanced Class-Incremental Learning
- Authors: Jiangpeng He, Fengqing Zhu,
- Abstract summary: Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
- Score: 8.438092346233054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data while retaining learned knowledge. A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution, which introduces a dual imbalance problem involving (i) disparities between stored exemplars of old tasks and new class data (inter-phase imbalance), and (ii) severe class imbalances within each individual task (intra-phase imbalance). We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL. Our method addresses it by reweighting the gradients towards balanced optimization and unbiased classifier learning. Additionally, we observe imbalanced forgetting where paradoxically the instance-rich classes suffer higher performance degradation during CIL due to a larger amount of training data becoming unavailable in subsequent learning phases. To tackle this, we further introduce a distribution-aware knowledge distillation loss to mitigate forgetting by aligning output logits proportionally with the distribution of lost training data. We validate our method on CIFAR-100, ImageNetSubset, and Food101 across various evaluation protocols and demonstrate consistent improvements compared to existing works, showing great potential to apply CIL in real-world scenarios with enhanced robustness and effectiveness.
Related papers
- Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
Real-world datasets are often highly class-imbalanced, which can adversely impact the performance of deep learning models.
The majority of research on training neural networks under class imbalance has focused on specialized loss functions, sampling techniques, or two-stage training procedures.
We demonstrate that simply tuning existing components of standard deep learning pipelines, such as the batch size, data augmentation, and label smoothing, can achieve state-of-the-art performance without any such specialized class imbalance methods.
arXiv Detail & Related papers (2023-12-05T05:52:44Z) - Online Continual Learning via Logit Adjusted Softmax [24.327176079085703]
Inter-class imbalance during training has been identified as a major cause of forgetting.
We present a simple adjustment of model logits during training can effectively resist prior class bias.
Our proposed method, Logit Adjusted Softmax, can mitigate the impact of inter-class imbalance not only in class-incremental but also in realistic general setups.
arXiv Detail & Related papers (2023-11-11T03:03:33Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
Semi-supervised learning (SSL) has shown great promise in leveraging unlabeled data to improve model performance.
We consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
We study a simple yet overlooked baseline -- SimiS -- which tackles data imbalance by simply supplementing labeled data with pseudo-labels.
arXiv Detail & Related papers (2022-11-20T21:18:41Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for
Imbalanced Classification [11.673344551762822]
Deep neural networks generally perform poorly with datasets that suffer from quantity imbalance and classification difficulty imbalance between different classes.
A phased progressive learning schedule was proposed for smoothly transferring the training emphasis from representation learning to upper classifier training.
Our code will be open source soon.
arXiv Detail & Related papers (2022-05-24T14:46:39Z) - Deep Reinforcement Learning for Multi-class Imbalanced Training [64.9100301614621]
We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets.
We formulate a custom reward function and episode-training procedure, specifically with the added capability of handling multi-class imbalanced training.
Using real-world clinical case studies, we demonstrate that our proposed framework outperforms current state-of-the-art imbalanced learning methods.
arXiv Detail & Related papers (2022-05-24T13:39:59Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Mitigating Dataset Imbalance via Joint Generation and Classification [17.57577266707809]
Supervised deep learning methods are enjoying enormous success in many practical applications of computer vision.
The marked performance degradation to biases and imbalanced data questions the reliability of these methods.
We introduce a joint dataset repairment strategy by combining a neural network classifier with Generative Adversarial Networks (GAN)
We show that the combined training helps to improve the robustness of both the classifier and the GAN against severe class imbalance.
arXiv Detail & Related papers (2020-08-12T18:40:38Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.