論文の概要: Normalizing Flows with Multi-Scale Autoregressive Priors
- arxiv url: http://arxiv.org/abs/2004.03891v1
- Date: Wed, 8 Apr 2020 09:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 07:50:25.039247
- Title: Normalizing Flows with Multi-Scale Autoregressive Priors
- Title(参考訳): マルチスケール自己回帰前処理を用いた正規化流れ
- Authors: Shweta Mahajan, Apratim Bhattacharyya, Mario Fritz, Bernt Schiele,
Stefan Roth
- Abstract要約: マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
- 参考スコア(独自算出の注目度): 131.895570212956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flow-based generative models are an important class of exact inference models
that admit efficient inference and sampling for image synthesis. Owing to the
efficiency constraints on the design of the flow layers, e.g. split coupling
flow layers in which approximately half the pixels do not undergo further
transformations, they have limited expressiveness for modeling long-range data
dependencies compared to autoregressive models that rely on conditional
pixel-wise generation. In this work, we improve the representational power of
flow-based models by introducing channel-wise dependencies in their latent
space through multi-scale autoregressive priors (mAR). Our mAR prior for models
with split coupling flow layers (mAR-SCF) can better capture dependencies in
complex multimodal data. The resulting model achieves state-of-the-art density
estimation results on MNIST, CIFAR-10, and ImageNet. Furthermore, we show that
mAR-SCF allows for improved image generation quality, with gains in FID and
Inception scores compared to state-of-the-art flow-based models.
- Abstract(参考訳): フローベース生成モデルは、画像合成のための効率的な推論とサンプリングを許容する正確な推論モデルの重要なクラスである。
フロー層の設計における効率上の制約、例えば、約半分のピクセルがさらなる変換を行わない分割結合フロー層は、条件付きピクセル単位の生成に依存する自己回帰モデルと比較して、長距離データ依存をモデル化する表現力に制限がある。
本研究では,マルチスケール自己回帰前処理 (mAR) を用いて,チャネル依存性を潜在空間に導入することにより,フローベースモデルの表現力を向上させる。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
得られたモデルは、MNIST、CIFAR-10、ImageNetの最先端密度推定結果を達成する。
さらに,mAR-SCFにより画像生成品質が向上し,FIDとインセプションスコアは最先端のフローベースモデルと比較して向上することを示した。
関連論文リスト
- Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
SDXLのような最先端拡散モデルに匹敵するレベルまで、非自己回帰マスク型画像モデリング(MIM)のテキスト・ツー・イメージが増大するMeissonicを提案する。
高品質なトレーニングデータを活用し、人間の嗜好スコアから得られるマイクロ条件を統合し、特徴圧縮層を用いて画像の忠実度と解像度をさらに向上する。
我々のモデルは、高画質の高精細画像を生成する際に、SDXLのような既存のモデルに適合するだけでなく、しばしば性能を上回ります。
論文 参考訳(メタデータ) (2024-10-10T17:59:17Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - Boosting Flow-based Generative Super-Resolution Models via Learned Prior [8.557017814978334]
フローベース超解像(SR)モデルは、高品質な画像を生成する際に驚くべき能力を示した。
これらの手法は、グリッドアーティファクト、爆発する逆数、固定サンプリング温度による最適以下の結果など、画像生成中にいくつかの課題に遭遇する。
本研究では、フローベースSRモデルの推論フェーズ前に学習した条件を導入する。
論文 参考訳(メタデータ) (2024-03-16T18:04:12Z) - Poisson flow consistency models for low-dose CT image denoising [3.6218104434936658]
本稿では,Poisson Flow Generative Model (PFGM)++で得られる柔軟性と,高品質で単一ステップの一貫性モデルのサンプリングを併用した新しい画像復調手法を提案する。
この結果から,PFGM++における拡張変数の次元性であるハイパーパラメータDのチューニングの柔軟性が,一貫性モデルよりも優れることが示唆された。
論文 参考訳(メタデータ) (2024-02-13T01:39:56Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - RG-Flow: A hierarchical and explainable flow model based on
renormalization group and sparse prior [2.274915755738124]
フローベース生成モデルは、教師なし学習アプローチの重要なクラスとなっている。
本研究では, 階層型フローベース生成モデル RG-Flow の設計のために, 再正規化群 (RG) とスパース事前分布の鍵となる概念を取り入れた。
提案手法は, エッジ長が$L$の画像の描画に$O(log L)$の複雑さを伴っているが, 従来より$O(L2)$の複雑性を持つ生成モデルに比べれば, エッジ長が$L$の画像の描画には$O(log L)$の複雑さがある。
論文 参考訳(メタデータ) (2020-09-30T18:04:04Z) - Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow [16.41460104376002]
有限体積を変換し、離散データに対する確率の正確な計算を可能にするサブセットフローを導入する。
我々は、WaveNets、PixelCNNs、Transformersを含む通常の離散自己回帰モデルを単層フローとして識別する。
我々は, CIFAR-10 を用いて, 脱量子化を訓練した流れモデルについて, 実測結果を示す。
論文 参考訳(メタデータ) (2020-02-06T22:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。