論文の概要: Visual Autoregressive Modeling for Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2501.18993v1
- Date: Fri, 31 Jan 2025 09:53:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:53.813419
- Title: Visual Autoregressive Modeling for Image Super-Resolution
- Title(参考訳): 画像超解像に対する視覚的自己回帰モデル
- Authors: Yunpeng Qu, Kun Yuan, Jinhua Hao, Kai Zhao, Qizhi Xie, Ming Sun, Chao Zhou,
- Abstract要約: 次世代の予測モデルとして, ISRフレームワークの視覚的自己回帰モデルを提案する。
大規模データを収集し、ロバストな生成先行情報を得るためのトレーニングプロセスを設計する。
- 参考スコア(独自算出の注目度): 14.935662351654601
- License:
- Abstract: Image Super-Resolution (ISR) has seen significant progress with the introduction of remarkable generative models. However, challenges such as the trade-off issues between fidelity and realism, as well as computational complexity, have also posed limitations on their application. Building upon the tremendous success of autoregressive models in the language domain, we propose \textbf{VARSR}, a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction. To effectively integrate and preserve semantic information in low-resolution images, we propose using prefix tokens to incorporate the condition. Scale-aligned Rotary Positional Encodings are introduced to capture spatial structures and the diffusion refiner is utilized for modeling quantization residual loss to achieve pixel-level fidelity. Image-based Classifier-free Guidance is proposed to guide the generation of more realistic images. Furthermore, we collect large-scale data and design a training process to obtain robust generative priors. Quantitative and qualitative results show that VARSR is capable of generating high-fidelity and high-realism images with more efficiency than diffusion-based methods. Our codes will be released at https://github.com/qyp2000/VARSR.
- Abstract(参考訳): Image Super-Resolution (ISR)は、顕著な生成モデルの導入によって大きな進歩を遂げている。
しかし、忠実さとリアリズムの間のトレードオフ問題や計算複雑性といった課題も、その応用に制限を与えている。
言語領域における自己回帰モデル(autoregressive model)の驚異的な成功を生かし、次世代の予測形式を用いた新しいISRフレームワークの視覚的自己回帰モデルである \textbf{VARSR} を提案する。
低解像度画像における意味情報を効果的に統合・保存するために,プレフィックストークンを用いて条件を組み込む手法を提案する。
空間構造を捉えるためにスケールアラインな回転位置符号化を導入し、拡散精製器を用いて量子化残差のモデリングを行い、画素レベルの忠実度を実現する。
より現実的な画像の生成を導くために,画像に基づく分類自由誘導法が提案されている。
さらに,大規模データを収集し,ロバストな生成先行情報を得るためのトレーニングプロセスを設計する。
定量的および定性的な結果から、VARSRは拡散法よりも高忠実で高現実的な画像を生成することができることが示された。
私たちのコードはhttps://github.com/qyp2000/VARSR.comで公開されます。
関連論文リスト
- Reward Incremental Learning in Text-to-Image Generation [26.64026346266299]
本稿では,計算オーバーヘッドを最小限に抑える方法であるReward Incremental Distillation(RID)を提案する。
実験結果から,RILシナリオにおける一貫した高次勾配生成の実現におけるRIDの有効性が示された。
論文 参考訳(メタデータ) (2024-11-26T10:54:33Z) - CART: Compositional Auto-Regressive Transformer for Image Generation [2.5563396001349297]
本稿では,自動回帰(AR)モデリングを用いた画像生成手法を提案する。
提案手法は,画像に細かな細部を合成的に繰り返し付加することにより,これらの課題に対処する。
この戦略は従来の次世代予測よりも効果的であることが示され、最先端の次世代予測アプローチを超えている。
論文 参考訳(メタデータ) (2024-11-15T13:29:44Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
本稿では,高忠実度連続画像超解像のためのインプリシティ拡散モデル(IDM)を提案する。
IDMは暗黙のニューラル表現とデノナイジング拡散モデルを統合されたエンドツーエンドフレームワークに統合する。
スケーリング係数は分解能を調節し、最終出力におけるLR情報と生成された特徴の比率を変調する。
論文 参考訳(メタデータ) (2023-03-29T07:02:20Z) - High-Resolution Image Synthesis with Latent Diffusion Models [14.786952412297808]
オートエンコーダ上での拡散モデルの訓練は、複雑性の低減と詳細保存の間のほぼ最適点に初めて到達することができる。
我々の潜伏拡散モデル(LDMs)は,様々なタスクにおける画像インペイントと高い競争性能の新たな技術を実現する。
論文 参考訳(メタデータ) (2021-12-20T18:55:25Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
本稿では,事前学習したGANを効果的かつシームレスに拡張できる,エミュレーティブモデル推論と呼ばれる汎用フレームワークを提案する。
我々の基本的な考え方は、ワッサーシュタイン勾配流法を用いて与えられた要求に対する最適潜時分布を効率的に推算することである。
論文 参考訳(メタデータ) (2021-12-07T05:22:50Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
ベクトル量子変分オートエンコーダと自己回帰モデルとを生成部として統合することにより、画像生成における高品質な結果が得られる。
本稿では,VQ-VAEからのコンテンツリッチな離散視覚コードブックの助けを借りて,この離散拡散モデルにより,グローバルな文脈で高忠実度画像を生成することができることを示す。
論文 参考訳(メタデータ) (2021-12-03T09:09:34Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。