論文の概要: Continual Learning with Gated Incremental Memories for sequential data
processing
- arxiv url: http://arxiv.org/abs/2004.04077v1
- Date: Wed, 8 Apr 2020 16:00:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 07:51:58.466141
- Title: Continual Learning with Gated Incremental Memories for sequential data
processing
- Title(参考訳): 逐次データ処理のためのGated Incremental Memoriesを用いた連続学習
- Authors: Andrea Cossu, Antonio Carta, Davide Bacciu
- Abstract要約: 従来の知識を忘れずに動的で非定常的な環境で学習する能力、あるいは継続学習(CL)は、適応型ソリューションのスケーラブルで信頼性の高いデプロイを可能にする重要な手段である。
本研究では,従来の知識を忘れることなく,入力分布における概念ドリフトに対処できるCLのためのリカレントニューラルネットワーク(RNN)モデルを提案する。
- 参考スコア(独自算出の注目度): 14.657656286730736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn in dynamic, nonstationary environments without
forgetting previous knowledge, also known as Continual Learning (CL), is a key
enabler for scalable and trustworthy deployments of adaptive solutions. While
the importance of continual learning is largely acknowledged in machine vision
and reinforcement learning problems, this is mostly under-documented for
sequence processing tasks. This work proposes a Recurrent Neural Network (RNN)
model for CL that is able to deal with concept drift in input distribution
without forgetting previously acquired knowledge. We also implement and test a
popular CL approach, Elastic Weight Consolidation (EWC), on top of two
different types of RNNs. Finally, we compare the performances of our enhanced
architecture against EWC and RNNs on a set of standard CL benchmarks, adapted
to the sequential data processing scenario. Results show the superior
performance of our architecture and highlight the need for special solutions
designed to address CL in RNNs.
- Abstract(参考訳): 従来の知識を忘れずに動的で非定常的な環境で学習する能力、あるいは継続学習(CL)は、適応型ソリューションのスケーラブルで信頼性の高いデプロイを可能にする重要な手段である。
連続学習の重要性は、機械ビジョンや強化学習問題で広く認識されているが、シーケンス処理タスクではほとんど文書化されていない。
本研究では,従来の知識を忘れることなく,入力分布における概念ドリフトに対処できるCLのためのリカレントニューラルネットワーク(RNN)モデルを提案する。
また、2つの異なるタイプのRNNの上に、人気のあるCLアプローチであるElastic Weight Consolidation (EWC)を実装し、テストします。
最後に、逐次データ処理シナリオに適応した標準CLベンチマークのセット上で、拡張アーキテクチャとEWCおよびRNNの性能を比較した。
その結果、アーキテクチャの優れた性能を示し、RNNにおけるCLに対応するように設計された特別なソリューションの必要性を強調した。
関連論文リスト
- Slowing Down Forgetting in Continual Learning [20.57872238271025]
継続的学習(CL)における一般的な課題は、新しいタスクが学習された後に古いタスクのパフォーマンスが落ちることを忘れることである。
本稿では,ReCLと呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-11T12:19:28Z) - Benchmarking Sensitivity of Continual Graph Learning for Skeleton-Based
Action Recognition [6.14431765787048]
継続的学習(CL)は、スクラッチからリトレーニングすることなく、さまざまなタスクにわたって知識を継続的に蓄積できる機械学習モデルを構築することを目的としている。
従来の研究では、事前学習グラフニューラルネットワーク(GNN)が微調整後に負の伝達を引き起こす可能性があることが示されている。
連続グラフ学習設定のための最初の連続グラフ学習ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-01-31T18:20:42Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
本稿では、インスタンス識別に基づくコントラスト学習(CL)を用いて、この問題に取り組むための最初の試みを行う。
本研究では、事前学習されたCLモデルと微調整されたCLモデルから識別表現を導出する能力を探求することにより、この問題に対処する。
論文 参考訳(メタデータ) (2022-09-28T04:36:34Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Continual Learning for Recurrent Neural Networks: a Review and Empirical
Evaluation [12.27992745065497]
リカレントニューラルネットワークによる連続学習は、受信データが定常的でない多数のアプリケーションへの道を開くことができる。
コントリビューションの分類とベンチマークのレビューを提供することで、シーケンシャルデータ処理のためのCLに関する文献を整理します。
我々は既存のデータセットに基づくシーケンシャルデータを持つclの新しいベンチマークを2つ提案する。
論文 参考訳(メタデータ) (2021-03-12T19:25:28Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
リカレントニューラルネットワーク(RNN)を用いた逐次データ処理における連続学習手法の有効性を評価する。
RNNに弾性重み強化などの重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重
そこで本研究では,重み付け手法の性能が処理シーケンスの長さに直接的な影響を受けず,むしろ高動作メモリ要求の影響を受けていることを示す。
論文 参考訳(メタデータ) (2020-06-22T10:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。