論文の概要: Self-Supervised Monocular Scene Flow Estimation
- arxiv url: http://arxiv.org/abs/2004.04143v2
- Date: Wed, 15 Apr 2020 22:17:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:36:02.649033
- Title: Self-Supervised Monocular Scene Flow Estimation
- Title(参考訳): 自己監督型単分子シーンフロー推定
- Authors: Junhwa Hur, Stefan Roth
- Abstract要約: 本稿では,競争精度とリアルタイム性能を両立させる新しい単眼シーンフロー法を提案する。
逆問題の観点から、深度と3次元運動を同時に推定する単一畳み込みニューラルネットワーク(CNN)を設計する。
- 参考スコア(独自算出の注目度): 27.477810324117016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene flow estimation has been receiving increasing attention for 3D
environment perception. Monocular scene flow estimation -- obtaining 3D
structure and 3D motion from two temporally consecutive images -- is a highly
ill-posed problem, and practical solutions are lacking to date. We propose a
novel monocular scene flow method that yields competitive accuracy and
real-time performance. By taking an inverse problem view, we design a single
convolutional neural network (CNN) that successfully estimates depth and 3D
motion simultaneously from a classical optical flow cost volume. We adopt
self-supervised learning with 3D loss functions and occlusion reasoning to
leverage unlabeled data. We validate our design choices, including the proxy
loss and augmentation setup. Our model achieves state-of-the-art accuracy among
unsupervised/self-supervised learning approaches to monocular scene flow, and
yields competitive results for the optical flow and monocular depth estimation
sub-tasks. Semi-supervised fine-tuning further improves the accuracy and yields
promising results in real-time.
- Abstract(参考訳): シーンフロー推定は3次元環境認識に注目が集まっている。
2つの時間的連続した画像から3次元構造と3次元運動を求める単眼のシーンフロー推定は、非常に不適切な問題であり、現実的な解決策が今までにない。
本稿では,競争精度と実時間性能を両立させる単眼シーンフロー法を提案する。
逆問題ビューを用いて,従来の光学フローコストボリュームから深さと3次元運動を同時に推定する単一畳み込みニューラルネットワーク(cnn)を設計する。
3次元損失関数と咬合推論を用いた自己教師あり学習を採用し,ラベルなしデータを活用する。
プロキシ損失や拡張設定など、設計上の選択を検証する。
本モデルは,単眼的シーンフローに対する教師なし/教師なし学習手法の最先端精度を実現し,光学的フローと単眼的深さ推定サブタスクの競合結果を得る。
半教師付き微調整により精度が向上し、有望な結果をリアルタイムで得られる。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - RAFT-MSF: Self-Supervised Monocular Scene Flow using Recurrent Optimizer [21.125470798719967]
本稿では,従来の手法に比べて精度が大幅に向上する自己教師付き単眼シーンフロー手法を提案する。
現状の光学フローモデルであるRAFTに基づいて、3次元運動場と不均一マップを同時に更新する新しいデコーダを設計する。
本手法は, 自己監督型単眼シーンフロー法における最先端の精度を実現し, 精度を34.2%向上させる。
論文 参考訳(メタデータ) (2022-05-03T15:43:57Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
ラベル付きデータが豊富である場合, 単一画像からの3次元ポーズ推定に対する改良されたアプローチは, 極めて効果的である。
最近の注目の多くは、セミと(あるいは)弱い教師付き学習に移行している。
本稿では,多視点の幾何学的制約を,識別可能な三角測量を用いて課し,ラベルがない場合の自己監督の形式として用いることを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:11:54Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
自己監督学習に基づくマルチフレーム一眼的シーンフローネットワークを導入。
自己監督学習に基づく単眼的シーンフロー法における最新の精度を観察する。
論文 参考訳(メタデータ) (2021-05-05T17:49:55Z) - Occlusion Guided Self-supervised Scene Flow Estimation on 3D Point
Clouds [4.518012967046983]
2つの連続時間フレーム間のスパースサンプリング点の3次元空間における流れを理解することは、現代の幾何学駆動系の中核石である。
本稿では,咬合下の3次元シーンフロー推定のための新しい自己教師あり学習法とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-04-10T09:55:19Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
シーンフローとして知られるシーン内の点の3次元運動を推定することは、コンピュータビジョンにおける中核的な問題である。
本稿では,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-19T23:23:48Z) - Do not trust the neighbors! Adversarial Metric Learning for
Self-Supervised Scene Flow Estimation [0.0]
シーンフローは動的3次元シーンの個々の点に3次元運動ベクトルを推定するタスクである。
本稿では,3次元シーンフローベンチマークと,トレーニングフローモデルのための新しい自己教師型セットアップを提案する。
我々は,移動コヒーレンスを保ち,多くの自監督ベースラインが把握できない局所的なジオメトリーを維持できることを発見した。
論文 参考訳(メタデータ) (2020-11-01T17:41:32Z) - Adversarial Self-Supervised Scene Flow Estimation [15.278302535191866]
本研究では,自己監督型シーンフロー推定のためのメトリクス学習手法を提案する。
自己監督型シーンフロー推定のためのベンチマークであるScene Flow Sandboxについて概説する。
論文 参考訳(メタデータ) (2020-11-01T16:37:37Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSFは立体映像からの3次元シーン構造と動きの同時再構成のための自己教師型フレームワークである。
提案モデルでは,課題の画像の相違やシーンフローを確実に予測できることを示す。
最先端技術よりも優れた一般化を実現し、目に見えない領域に迅速かつ堅牢に適応する。
論文 参考訳(メタデータ) (2020-06-19T17:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。