論文の概要: FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation
- arxiv url: http://arxiv.org/abs/2011.10147v2
- Date: Sun, 4 Apr 2021 14:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 20:43:19.120828
- Title: FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation
- Title(参考訳): FlowStep3D:自己監督型シーンフロー推定のためのモデルアンロール
- Authors: Yair Kittenplon, Yonina C. Eldar, Dan Raviv
- Abstract要約: シーンフローとして知られるシーン内の点の3次元運動を推定することは、コンピュータビジョンにおける中核的な問題である。
本稿では,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 87.74617110803189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the 3D motion of points in a scene, known as scene flow, is a core
problem in computer vision. Traditional learning-based methods designed to
learn end-to-end 3D flow often suffer from poor generalization. Here we present
a recurrent architecture that learns a single step of an unrolled iterative
alignment procedure for refining scene flow predictions. Inspired by classical
algorithms, we demonstrate iterative convergence toward the solution using
strong regularization. The proposed method can handle sizeable temporal
deformations and suggests a slimmer architecture than competitive all-to-all
correlation approaches. Trained on FlyingThings3D synthetic data only, our
network successfully generalizes to real scans, outperforming all existing
methods by a large margin on the KITTI self-supervised benchmark.
- Abstract(参考訳): シーンフローと呼ばれるシーン内の点の3次元動きを推定することは、コンピュータビジョンの核となる問題である。
エンドツーエンドの3Dフローを学習するために設計された従来の学習ベースの手法は、しばしば一般化の貧弱さに悩まされる。
ここでは,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
古典的アルゴリズムに触発され,強正則化を用いて解に対する反復収束を示す。
提案手法は, 最大時間変形の処理が可能であり, 競合するオール・ツー・オール相関手法よりもスリムなアーキテクチャを提案する。
FlyingThings3Dの合成データのみをトレーニングし、我々のネットワークは実際のスキャンに成功し、KITTIの自己管理ベンチマークにおいて既存の手法をはるかに上回っている。
関連論文リスト
- Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
カメラによるセマンティックシーンの補完を改善するための,新たな時間的文脈学習パラダイムであるHTCLを提案する。
提案手法は,Semantic KITTIベンチマークで1st$をランク付けし,mIoUの点でLiDARベースの手法を超えている。
論文 参考訳(メタデータ) (2024-07-02T09:11:17Z) - SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow [25.577386156273256]
シーンフロー推定は、連続した観察からシーンの3次元運動を見つけることを目的として、コンピュータビジョンにおける長年の課題である。
そこで本研究では,少量のデータから学習可能なシーンフロー推定手法であるSCOOPについて紹介する。
論文 参考訳(メタデータ) (2022-11-25T10:52:02Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
自己監督学習に基づくマルチフレーム一眼的シーンフローネットワークを導入。
自己監督学習に基づく単眼的シーンフロー法における最新の精度を観察する。
論文 参考訳(メタデータ) (2021-05-05T17:49:55Z) - FlowMOT: 3D Multi-Object Tracking by Scene Flow Association [9.480272707157747]
従来のマッチングアルゴリズムと点運動情報を統合するLiDARベースの3D MOTフレームワークFlowMOTを提案する。
提案手法は,最新のエンドツーエンド手法より優れ,最先端のフィルタ方式と競合する性能を実現する。
論文 参考訳(メタデータ) (2020-12-14T14:03:48Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
本研究では,シーン再構成とセマンティックシーン補完を段階的かつリアルタイムに共同で行うフレームワークを提案する。
我々のフレームワークは、3Dグローバルモデルでセマンティックコンプリートを正確かつ効率的に融合させるために、占有マップを処理し、ボクセル状態を活用するように設計された新しいニューラルアーキテクチャに依存している。
論文 参考訳(メタデータ) (2020-10-26T15:31:52Z) - Deep-3DAligner: Unsupervised 3D Point Set Registration Network With
Optimizable Latent Vector [15.900382629390297]
本稿では,3次元登録における技術的課題に対処するために,学習に最適化を統合する新しいモデルを提案する。
ディープトランスフォーメーションデコーディングネットワークに加えて、我々のフレームワークは最適化可能なディープアンダーラインSpatial UnderlineCorrelation UnderlineRepresentationを導入している。
論文 参考訳(メタデータ) (2020-09-29T22:44:38Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSFは立体映像からの3次元シーン構造と動きの同時再構成のための自己教師型フレームワークである。
提案モデルでは,課題の画像の相違やシーンフローを確実に予測できることを示す。
最先端技術よりも優れた一般化を実現し、目に見えない領域に迅速かつ堅牢に適応する。
論文 参考訳(メタデータ) (2020-06-19T17:28:07Z) - Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [36.414471128890284]
自己教師型共同深層学習におけるスケール不整合の本質的問題に対処する。
既存の手法の多くは、全ての入力サンプルで一貫した深さとポーズを学習できると仮定している。
本稿では,ネットワーク推定からスケールを明示的に切り離す新しいシステムを提案する。
論文 参考訳(メタデータ) (2020-04-03T00:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。