Segmenting objects with Bayesian fusion of active contour models and convnet priors
- URL: http://arxiv.org/abs/2410.07421v1
- Date: Wed, 9 Oct 2024 20:36:43 GMT
- Title: Segmenting objects with Bayesian fusion of active contour models and convnet priors
- Authors: Przemyslaw Polewski, Jacquelyn Shelton, Wei Yao, Marco Heurich,
- Abstract summary: We propose a novel instance segmentation method geared towards Natural Resource Monitoring (NRM) imagery.
We formulate the problem as Bayesian maximum a posteriori inference which, in learning the individual object contours, incorporates shape, location, and position priors.
In experiments, we tackle the challenging, real-world problem of segmenting individual dead tree crowns and precise contours.
- Score: 0.729597981661727
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Instance segmentation is a core computer vision task with great practical significance. Recent advances, driven by large-scale benchmark datasets, have yielded good general-purpose Convolutional Neural Network (CNN)-based methods. Natural Resource Monitoring (NRM) utilizes remote sensing imagery with generally known scale and containing multiple overlapping instances of the same class, wherein the object contours are jagged and highly irregular. This is in stark contrast with the regular man-made objects found in classic benchmark datasets. We address this problem and propose a novel instance segmentation method geared towards NRM imagery. We formulate the problem as Bayesian maximum a posteriori inference which, in learning the individual object contours, incorporates shape, location, and position priors from state-of-the-art CNN architectures, driving a simultaneous level-set evolution of multiple object contours. We employ loose coupling between the CNNs that supply the priors and the active contour process, allowing a drop-in replacement of new network architectures. Moreover, we introduce a novel prior for contour shape, namely, a class of Deep Shape Models based on architectures from Generative Adversarial Networks (GANs). These Deep Shape Models are in essence a non-linear generalization of the classic Eigenshape formulation. In experiments, we tackle the challenging, real-world problem of segmenting individual dead tree crowns and delineating precise contours. We compare our method to two leading general-purpose instance segmentation methods - Mask R-CNN and K-net - on color infrared aerial imagery. Results show our approach to significantly outperform both methods in terms of reconstruction quality of tree crown contours. Furthermore, use of the GAN-based deep shape model prior yields significant improvement of all results over the vanilla Eigenshape prior.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Improving Shape Awareness and Interpretability in Deep Networks Using
Geometric Moments [0.0]
Deep networks for image classification often rely more on texture information than object shape.
This paper presents a deep-learning model inspired by geometric moments.
We demonstrate the effectiveness of our method on standard image classification datasets.
arXiv Detail & Related papers (2022-05-24T02:08:05Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - Deep Manifold Prior [37.725563645899584]
We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent.
We show that surfaces generated this way are smooth, with limiting behavior characterized by Gaussian processes, and we mathematically derive such properties for fully-connected as well as convolutional networks.
arXiv Detail & Related papers (2020-04-08T20:47:56Z) - Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks [2.454342521577328]
We present a (two-stage) approach built around convolutional neural networks (CNNs)
In the first stage, our approach uses a Mask RCNN model to identify superquadric-like structures in depth scenes.
We are able to describe complex structures with a small number of interpretable parameters.
arXiv Detail & Related papers (2020-01-28T18:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.