論文の概要: Error correction and extraction in request dialogs
- arxiv url: http://arxiv.org/abs/2004.04243v4
- Date: Tue, 20 Jun 2023 17:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 08:33:49.063879
- Title: Error correction and extraction in request dialogs
- Title(参考訳): 要求ダイアログにおける誤り訂正と抽出
- Authors: Stefan Constantin and Alex Waibel
- Abstract要約: Componentは、ユーザの2つの最後の発話を取得し、最後の発話が2番目の最後の発話の誤り訂正であるかどうかを検出する。
そして、最後の発話における誤差補正に従って第2の最終発話を補正し、抽出した再並列及び補修エンティティのペアを出力する。
1つの誤り訂正検出と1つの誤り訂正アプローチをパイプラインに組み合わせたり、エラー訂正アプローチをトレーニングしたり、エンドツーエンドで2つのコンポーネントを避けることができる。
- 参考スコア(独自算出の注目度): 12.137183622356197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a dialog system utility component that gets the last two
utterances of a user and can detect whether the last utterance is an error
correction of the second last utterance. If yes, it corrects the second last
utterance according to the error correction in the last utterance and outputs
the extracted pairs of reparandum and repair entity. This component offers two
advantages, learning the concept of corrections to avoid collecting corrections
for every new domain and extracting reparandum and repair pairs, which offers
the possibility to learn out of it.
For the error correction one sequence labeling and two sequence to sequence
approaches are presented. For the error correction detection these three error
correction approaches can also be used and in addition, we present a sequence
classification approach. One error correction detection and one error
correction approach can be combined to a pipeline or the error correction
approaches can be trained and used end-to-end to avoid two components. We
modified the EPIC-KITCHENS-100 dataset to evaluate the approaches for
correcting entity phrases in request dialogs. For error correction detection
and correction, we got an accuracy of 96.40 % on synthetic validation data and
an accuracy of 77.81 % on human-created real-world test data.
- Abstract(参考訳): 本稿では,ユーザの最後の2つの発話を受信し,最後の発話が第2の発話の誤り訂正であるか否かを検出する対話システムユーティリティコンポーネントを提案する。
もしそうであれば、最後の発話における誤差補正に従って第2の最終発話を補正し、抽出した再ペアの補修エンティティを出力する。
このコンポーネントは、新しいドメイン毎の修正の収集を避けるために修正の概念を学ぶことと、reparandumとre repair pairsを抽出することの2つの利点を提供する。
誤り訂正のために、1つのシーケンスラベリングと2つのシーケンス to シーケンスアプローチを示す。
誤り訂正検出には,これら3つの誤り訂正手法が利用可能であり,さらに,シーケンス分類手法を提案する。
1つのエラー訂正検出と1つのエラー補正アプローチをパイプラインと組み合わせたり、エラー修正アプローチをトレーニングしたり、エンドツーエンドで2つのコンポーネントを避けることができる。
我々はEPIC-KITCHENS-100データセットを修正し、要求ダイアログにおけるエンティティフレーズの修正手法を評価した。
誤り訂正検出と補正には,人工検証データでは96.40%,実世界テストデータでは77.81%の精度が得られた。
関連論文リスト
- A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction [79.52464132360618]
中国語のSpelling Correction(CSC)は、自然言語処理(NLP)の基本課題である。
本稿では,エラー検出・相関器の枠組みに基づく新しい手法を提案する。
我々の検出器は2つのエラー検出結果を得るように設計されており、それぞれ高精度とリコールが特徴である。
論文 参考訳(メタデータ) (2024-09-06T09:26:45Z) - Tag and correct: high precision post-editing approach to correction of speech recognition errors [0.0]
ASR(Automatic Speech Recognition)仮説の単語を単語単位で修正する方法を学ぶニューラルネットワークタグと、タグによって返される修正を適用する修正モジュールとから構成される。
提案手法はアーキテクチャによらず,任意のASRシステムに適用可能である。
論文 参考訳(メタデータ) (2024-06-11T09:52:33Z) - Lyra: Orchestrating Dual Correction in Automated Theorem Proving [63.115422781158934]
Lyraは新しいフレームワークで、ツール補正とConjecture Correctionという2つの異なる補正メカニズムを採用している。
ツール補正は幻覚の緩和に寄与し、それによって証明の全体的な精度が向上する。
Conjecture Correctionは命令で生成を洗練させるが、ペア化された(生成、エラー、改善)プロンプトは収集しない。
論文 参考訳(メタデータ) (2023-09-27T17:29:41Z) - SoftCorrect: Error Correction with Soft Detection for Automatic Speech
Recognition [116.31926128970585]
我々は,明示的かつ暗黙的な誤り検出の限界を回避するため,ソフトエラー検出機構を備えたSoftCorrectを提案する。
暗黙的な誤り検出とCTC損失と比較すると、SoftCorrectはどの単語が誤りであるかを明示的な信号を提供する。
AISHELL-1とAidatatangデータセットの実験では、SoftCorrectはそれぞれ26.1%と9.4%のCER削減を達成した。
論文 参考訳(メタデータ) (2022-12-02T09:11:32Z) - FastCorrect 2: Fast Error Correction on Multiple Candidates for
Automatic Speech Recognition [92.12910821300034]
本稿では,複数のASR候補を入力として取り込んだ誤り訂正モデルFastCorrect 2を提案する。
FastCorrect 2は、カスケードされた再描画と修正パイプラインよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-29T13:48:03Z) - A Simple and Practical Approach to Improve Misspellings in OCR Text [0.0]
本稿では,OCRテキストにおける非単語誤りの同定と訂正に焦点を当てる。
従来のN-gram補正法は、1ワード誤りを効果的に処理できる。
本稿では,分割およびマージエラーを処理可能な教師なし手法を開発する。
論文 参考訳(メタデータ) (2021-06-22T19:38:17Z) - Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese
Grammatical Error Correction [49.25830718574892]
本稿では,Tail-to-Tail (textbfTtT) という新しいフレームワークを提案する。
ほとんどのトークンが正しいので、ソースからターゲットに直接転送でき、エラー位置を推定して修正することができる。
標準データセット、特に可変長データセットに関する実験結果は、文レベルの精度、精度、リコール、F1-Measureの観点からTtTの有効性を示す。
論文 参考訳(メタデータ) (2021-06-03T05:56:57Z) - Factual Error Correction of Claims [18.52583883901634]
本稿では,事実誤り訂正の課題を紹介する。
誤情報を含む文章を修正するメカニズムを提供します。
これは、すでに証拠によって部分的に支持されている主張に固有の説明として機能する。
論文 参考訳(メタデータ) (2020-12-31T18:11:26Z) - Improving the Efficiency of Grammatical Error Correction with Erroneous
Span Detection and Correction [106.63733511672721]
ESD(Eroneous Span Detection)とESC(Eroneous Span Correction)の2つのサブタスクに分割することで、文法的誤り訂正(GEC)の効率を改善するための言語に依存しない新しいアプローチを提案する。
ESDは、効率的なシーケンスタグ付けモデルを用いて文法的に誤りテキストスパンを識別する。ESCは、Seq2seqモデルを利用して、注釈付き誤字スパンの文を入力として取り、これらのスパンの修正テキストのみを出力する。
実験の結果,提案手法は英語と中国語のGECベンチマークにおいて従来のセク2seq手法と同等に動作し,推論に要するコストは50%以下であった。
論文 参考訳(メタデータ) (2020-10-07T08:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。