論文の概要: Reliable Time Prediction in the Markov Stochastic Block Model
- arxiv url: http://arxiv.org/abs/2004.04402v2
- Date: Tue, 22 Mar 2022 07:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 03:30:58.352780
- Title: Reliable Time Prediction in the Markov Stochastic Block Model
- Title(参考訳): マルコフ確率ブロックモデルにおける信頼性時間予測
- Authors: Quentin Duchemin (LAMA)
- Abstract要約: 成長するグラフの依存構造をMSBMを用いて検出する方法を示す。
本稿では,いわゆるリンク予測と協調フィルタリングの問題を解決する方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Markov Stochastic Block Model (MSBM): an extension of the
Stochastic Block Model where communities of the nodes are assigned through a
Markovian dynamic. We show how MSBMs can be used to detect dependence structure
in growing graphs and we provide methods to solve the so-called link prediction
and collaborative filtering problems. We make our approaches robust with
respect to the outputs of the clustering algorithm and we propose a model
selection procedure. Our methods can be applied regardless of the algorithm
used to recover communities in the network. In this paper, we use a recent SDP
method to infer the hidden communities and we provide theoretical guarantees.
In particular, we identify the relevant signal-to-noise ratio (SNR) in our
framework and we prove that the misclassification error decays exponentially
fast with respect to this SNR.
- Abstract(参考訳): マルコフ確率ブロックモデル(英: markov stochastic block model, msbm)とは、マルコフ力学を通じてノードのコミュニティが割り当てられる確率ブロックモデルの拡張である。
我々は,MSBMを用いて生長グラフの依存構造を検出する方法を示し,リンク予測と協調フィルタリングの問題を解決する方法を提案する。
クラスタリングアルゴリズムの出力に対して,我々のアプローチを頑健にし,モデル選択手順を提案する。
本手法は,ネットワーク内のコミュニティを回復するアルゴリズムによらず適用可能である。
本稿では,近年のSDP手法を用いて隠れたコミュニティを推定し,理論的保証を提供する。
特に,本フレームワークにおける関連信号対雑音比(SNR)を同定し,このSNRに関して誤分類誤差が指数関数的に早く崩壊することを証明する。
関連論文リスト
- Representation and De-interleaving of Mixtures of Hidden Markov Processes [3.7348616912887445]
隠れマルコフ過程(HMP)の混合物の分離は、一般的にその表現モデルに依存する。
本稿では,HMPの混合物に対する新しい表現モデルとそれに対応するインターリーブ法を提案する。
論文 参考訳(メタデータ) (2024-06-01T12:24:23Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
連続正規化フロー(CNF)は、ニューラルネットワークを用いて前記経路を生成するベクトル場をモデル化することにより、基準分布と目標分布の間の確率経路を学習する。
近年,Lipman et al. (2022) は生成モデルにおけるCNFsの簡易かつ安価な学習法であるフローマッチング (FM) を導入した。
本稿では,この手法をマルコフサンプリング法をFM目標評価に応用し,学習したCNFを用いてモンテカルロサンプリングを改善することにより,確率的推論に再利用する。
論文 参考訳(メタデータ) (2024-05-23T10:08:19Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
拡散モデルを用いた重畳音源の分離手法を提案する。
高周波(RF)システムへの応用によって、我々は、基礎となる離散的な性質を持つ情報源に興味を持っている。
提案手法は,最近提案されたスコア蒸留サンプリング方式のマルチソース拡張と見なすことができる。
論文 参考訳(メタデータ) (2023-06-26T04:12:40Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Autoregressive Hidden Markov Models with partial knowledge on latent
space applied to aero-engines prognostics [2.179313476241343]
本稿では,ARPHMM(Auto Regressive Partially-hidden Markov Model)を用いて,センサデータに基づく機器の故障検出と予後予測を行う。
健康指標に基づいて,このモデルを用いて残りの生活を推定する方法を示す。
論文 参考訳(メタデータ) (2021-05-01T10:23:22Z) - Formal Verification of Stochastic Systems with ReLU Neural Network
Controllers [22.68044012584378]
reluニューラルネットワーク(nn)コントローラを備えたサイバーフィジカルシステムの形式的安全性検証の問題に対処する。
私たちの目標は、所定の自信を持って、システムが安全でない構成に達しない初期状態のセットを見つけることです。
論文 参考訳(メタデータ) (2021-03-08T23:53:13Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。