論文の概要: Community Detection in the Stochastic Block Model by Mixed Integer
Programming
- arxiv url: http://arxiv.org/abs/2101.12336v1
- Date: Tue, 26 Jan 2021 22:04:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:38:20.174590
- Title: Community Detection in the Stochastic Block Model by Mixed Integer
Programming
- Title(参考訳): 混合整数計画法による確率ブロックモデルのコミュニティ検出
- Authors: Breno Serrano and Thibaut Vidal
- Abstract要約: Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Degree-Corrected Stochastic Block Model (DCSBM) is a popular model to
generate random graphs with community structure given an expected degree
sequence. The standard approach of community detection based on the DCSBM is to
search for the model parameters that are the most likely to have produced the
observed network data through maximum likelihood estimation (MLE). Current
techniques for the MLE problem are heuristics, and therefore do not guarantee
convergence to the optimum. We present mathematical programming formulations
and exact solution methods that can provably find the model parameters and
community assignments of maximum likelihood given an observed graph. We compare
these exact methods with classical heuristic algorithms based on
expectation-maximization (EM). The solutions given by exact methods give us a
principled way of measuring the experimental performance of classical
heuristics and comparing different variations thereof.
- Abstract(参考訳): Degree-Corrected Stochastic Block Model (DCSBM) は、期待される次数列を持つコミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大可能性推定(MLE)を通じて観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを検索することです。
MLE問題の現在のテクニックはヒューリスティックスであり、従って最適への収束を保証するものではない。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
これらの厳密な手法を期待最大化(em)に基づく古典的ヒューリスティックアルゴリズムと比較する。
正確な方法によって与えられた解は、古典的ヒューリスティックの実験性能を測定し、その異なる変化を比較する原則的な方法を与える。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
カーネル密度推定(KDE)に基づくモデルは、このタスクの一般的な選択であるが、密度の異なるデータ領域に適応できない。
適応的なKDEモデルを用いてこれを回避し、モデル内の各カーネルは個別の帯域幅を持つ。
最適化速度を確実に高速化するために改良された期待最大化アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-10-05T14:08:42Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - PSD Representations for Effective Probability Models [117.35298398434628]
最近提案された非負関数に対する正半定値(PSD)モデルがこの目的に特に適していることを示す。
我々はPSDモデルの近似と一般化能力の両方を特徴付け、それらが強い理論的保証を享受していることを示す。
本研究では,PSDモデルの密度推定,決定理論,推論への応用への道を開く。
論文 参考訳(メタデータ) (2021-06-30T15:13:39Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
離散選択モデル(DCM)における確率的機械学習の非パラメトリッククラスを提案する。
提案モデルでは,GPを用いた行動同質クラスタ(ラテントクラス)に確率的に個人を割り当てる。
モデルは2つの異なるモード選択アプリケーションでテストされ、異なるLCCMベンチマークと比較される。
論文 参考訳(メタデータ) (2021-01-28T19:56:42Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
本稿では、ニューラルネットワークとスケーラブルな最適化アルゴリズムを用いた生存分析のためのフレキシブルモデルを提案する。
提案手法の有効性を,既存の最先端ディープラーニングサバイバル分析モデルと比較した。
論文 参考訳(メタデータ) (2020-08-19T19:11:25Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
推定モデルに対する信頼度勾配を得るのが困難であることや、間接的にターゲットのログを最適化することの欠点を優雅に解決できることが示される。
本稿では,対象の対数類似度を直接最大化し,後部モデルと推論モデルとの包摂的ばらつきを同時に最小化することを提案する。
結果の学習アルゴリズムは、ジョイントSA(JSA)と呼ばれる。
論文 参考訳(メタデータ) (2020-05-28T13:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。