論文の概要: NodeSLAM: Neural Object Descriptors for Multi-View Shape Reconstruction
- arxiv url: http://arxiv.org/abs/2004.04485v2
- Date: Sat, 10 Oct 2020 16:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 03:03:41.167861
- Title: NodeSLAM: Neural Object Descriptors for Multi-View Shape Reconstruction
- Title(参考訳): NodeSLAM: 多視点形状再構成のためのニューラルオブジェクト記述子
- Authors: Edgar Sucar, Kentaro Wada, and Andrew Davison
- Abstract要約: 本稿では,新しい確率的・微分レンダリングエンジンとともに,効率的で最適化可能な多クラス学習オブジェクト記述子を提案する。
本フレームワークは,ロボットの把握・配置,拡張現実,第1次オブジェクトレベルSLAMシステムなど,複数の応用が可能な,正確で堅牢な3次元オブジェクト再構成を実現する。
- 参考スコア(独自算出の注目度): 4.989480853499916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The choice of scene representation is crucial in both the shape inference
algorithms it requires and the smart applications it enables. We present
efficient and optimisable multi-class learned object descriptors together with
a novel probabilistic and differential rendering engine, for principled full
object shape inference from one or more RGB-D images. Our framework allows for
accurate and robust 3D object reconstruction which enables multiple
applications including robot grasping and placing, augmented reality, and the
first object-level SLAM system capable of optimising object poses and shapes
jointly with camera trajectory.
- Abstract(参考訳): シーン表現の選択は、必要な形状推論アルゴリズムと、利用可能なスマートアプリケーションの両方において重要である。
本稿では,複数のRGB-D画像から得られる全物体形状の原理的推論のための,効率的で最適化可能な多クラス学習オブジェクト記述子と,新しい確率的・微分レンダリングエンジンを提案する。
本フレームワークは,ロボットの把握・配置・拡張現実,およびカメラ軌道と協調して物体のポーズや形状を最適化できる最初のオブジェクトレベルSLAMシステムなど,複数の応用が可能な,正確で堅牢な3次元オブジェクト再構成を実現する。
関連論文リスト
- SHINOBI: Shape and Illumination using Neural Object Decomposition via BRDF Optimization In-the-wild [76.21063993398451]
制約のない画像コレクションに基づくオブジェクトの逆レンダリングは、コンピュータビジョンとグラフィックスにおける長年の課題である。
マルチレゾリューションハッシュ符号化に基づく暗黙の形状表現により,高速かつ堅牢な形状復元が可能となることを示す。
本手法はクラス非依存であり,3Dアセットを生成するために,オブジェクトのWildイメージコレクションで動作する。
論文 参考訳(メタデータ) (2024-01-18T18:01:19Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
論文 参考訳(メタデータ) (2023-06-06T15:07:39Z) - Anything-3D: Towards Single-view Anything Reconstruction in the Wild [61.090129285205805]
本稿では,一連の視覚言語モデルとSegment-Anythingオブジェクトセグメンテーションモデルを組み合わせた方法論的フレームワークであるAnything-3Dを紹介する。
提案手法では、BLIPモデルを用いてテキスト記述を生成し、Segment-Anythingモデルを用いて関心対象を効果的に抽出し、テキスト・画像拡散モデルを用いて物体を神経放射場へ持ち上げる。
論文 参考訳(メタデータ) (2023-04-19T16:39:51Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
微分可能レンダリング(DR)に基づく3次元オブジェクト再構成はコンピュータビジョンにおいて活発な研究課題である。
DRに基づく多視点3Dオブジェクト再構成において,構造化光(SL)を用いたアクティブセンシングを導入し,任意のシーンやカメラポーズの未知の形状と外観を学習する。
本手法は, テクスチャレス領域における高い再現精度を実現し, カメラポーズキャリブレーションの労力を削減する。
論文 参考訳(メタデータ) (2022-11-22T03:10:46Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - SDFEst: Categorical Pose and Shape Estimation of Objects from RGB-D
using Signed Distance Fields [5.71097144710995]
RGB-D画像からのオブジェクトのポーズと形状推定のためのモジュールパイプラインを提案する。
生成型形状モデルと新しいネットワークを統合して,単一または複数ビューからの6次元ポーズと形状推定を可能にする。
我々は、合成データと実データの両方に関するいくつかの実験において、最先端手法に対するアプローチの利点を実証する。
論文 参考訳(メタデータ) (2022-07-11T13:53:50Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Florence、Manuelli、TedrakeによるDense Object Nets(DON)は、ロボットコミュニティのための新しいビジュアルオブジェクト表現として高密度オブジェクト記述子を導入した。
本稿では, 物体の3次元モデルを考えると, 記述子空間画像を生成することができ, DON の教師付きトレーニングが可能であることを示す。
産業用物体の6次元グリップ生成のためのトレーニング手法を比較し,新しい教師付きトレーニング手法により,産業関連タスクのピック・アンド・プレイス性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-16T11:40:12Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
単一のRGB画像から複数の3Dオブジェクトを検出し再構成する方法を提案する。
キーポイント検出器は、オブジェクトを中心点としてローカライズし、9-DoF境界ボックスや3D形状を含む全てのオブジェクト特性を直接予測する。
提示されたアプローチは、軽量な再構築を単一ステージで実行し、リアルタイム能力を持ち、完全に微分可能で、エンドツーエンドのトレーナーブルである。
論文 参考訳(メタデータ) (2020-12-21T18:52:21Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
本稿では,既存の3次元モデルの大規模データセットを活用し,画像中の物体の3次元構造を理解することを提案する。
本稿では,実世界の画像と検出対象を共同で検出するMask2CADについて,最も類似したCADモデルとそのポーズを最適化する。
これにより、画像内のオブジェクトのクリーンで軽量な表現が生成される。
論文 参考訳(メタデータ) (2020-07-26T00:08:37Z) - MoreFusion: Multi-object Reasoning for 6D Pose Estimation from
Volumetric Fusion [19.034317851914725]
本稿では,複数の既知の物体の接触と隠蔽の正確なポーズを,リアルタイムな多視点視から推定するシステムを提案する。
提案手法は,1枚のRGB-Dビューからの3Dオブジェクトのポーズ提案を行い,カメラが移動すると,複数のビューからのポーズ推定と非パラメトリック占有情報を蓄積する。
提案手法の精度とロバスト性を2つのオブジェクトデータセット(YCB-Video)で実験的に検証する。
論文 参考訳(メタデータ) (2020-04-09T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。