論文の概要: Towards Scalable Multi-View Reconstruction of Geometry and Materials
- arxiv url: http://arxiv.org/abs/2306.03747v1
- Date: Tue, 6 Jun 2023 15:07:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 14:56:58.005054
- Title: Towards Scalable Multi-View Reconstruction of Geometry and Materials
- Title(参考訳): 幾何・材料のスケーラブル多視点再構成に向けて
- Authors: Carolin Schmitt and Bo\v{z}idar Anti\'c and Andrei Neculai and Joo Ho
Lee and Andreas Geiger
- Abstract要約: 本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
- 参考スコア(独自算出の注目度): 27.660389147094715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel method for joint recovery of camera pose,
object geometry and spatially-varying Bidirectional Reflectance Distribution
Function (svBRDF) of 3D scenes that exceed object-scale and hence cannot be
captured with stationary light stages. The input are high-resolution RGB-D
images captured by a mobile, hand-held capture system with point lights for
active illumination. Compared to previous works that jointly estimate geometry
and materials from a hand-held scanner, we formulate this problem using a
single objective function that can be minimized using off-the-shelf
gradient-based solvers. To facilitate scalability to large numbers of
observation views and optimization variables, we introduce a distributed
optimization algorithm that reconstructs 2.5D keyframe-based representations of
the scene. A novel multi-view consistency regularizer effectively synchronizes
neighboring keyframes such that the local optimization results allow for
seamless integration into a globally consistent 3D model. We provide a study on
the importance of each component in our formulation and show that our method
compares favorably to baselines. We further demonstrate that our method
accurately reconstructs various objects and materials and allows for expansion
to spatially larger scenes. We believe that this work represents a significant
step towards making geometry and material estimation from hand-held scanners
scalable.
- Abstract(参考訳): 本稿では,カメラのポーズ,物体形状,空間変動する立体反射率分布関数(svbrdf)を,物体規模を超え,静止光ステージでは撮影できない3次元シーンで統合的に復元する方法を提案する。
入力は高解像度のRGB-D画像であり、アクティブ照明用の点灯付き携帯型手持ちキャプチャシステムによってキャプチャされる。
ハンドヘルドスキャナーから幾何学と材料を共同で推定する以前の研究と比較し, 既成勾配解法を用いて最小化できる単一目的関数を用いてこの問題を定式化する。
多数の観測ビューや最適化変数へのスケーラビリティ向上を目的として,2.5D鍵フレームに基づくシーン表現を再構成する分散最適化アルゴリズムを提案する。
新しいマルチビュー一貫性調整器は、局所最適化結果がグローバルに一貫性のある3dモデルへのシームレスな統合を可能にするように、隣り合うキーフレームを効果的に同期する。
定式化における各成分の重要性について検討し,本手法がベースラインと良好に比較できることを示す。
さらに, 様々な物体や材料を正確に再構成し, 空間的に大きなシーンにまで拡張できることを実証する。
この研究は、ハンドヘルドスキャナーから幾何学的および物質的推定をスケーラブルにするための重要なステップであると考えている。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
本稿では,単一の広線ステレオ画像ペアのみを付与した新しいビュー合成手法を提案する。
スパース観測による新しいビュー合成への既存のアプローチは、誤った3次元形状の復元によって失敗する。
対象光線に対する画像特徴を組み立てるための,効率的な画像空間のエピポーラ線サンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:40:52Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
微分可能レンダリング(DR)に基づく3次元オブジェクト再構成はコンピュータビジョンにおいて活発な研究課題である。
DRに基づく多視点3Dオブジェクト再構成において,構造化光(SL)を用いたアクティブセンシングを導入し,任意のシーンやカメラポーズの未知の形状と外観を学習する。
本手法は, テクスチャレス領域における高い再現精度を実現し, カメラポーズキャリブレーションの労力を削減する。
論文 参考訳(メタデータ) (2022-11-22T03:10:46Z) - Few-shot Non-line-of-sight Imaging with Signal-surface Collaborative
Regularization [18.466941045530408]
非視線イメージング技術は、多重反射光からターゲットを再構成することを目的としている。
最小限の測定回数でノイズロバストを再現する信号表面の協調正規化フレームワークを提案する。
我々のアプローチは、救助活動や自律運転といったリアルタイム非視線画像アプリケーションにおいて大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-11-21T11:19:20Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
論文 参考訳(メタデータ) (2021-09-25T02:55:05Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。